Abrir menú principal

DIA β

Cambios

Historias en mecánica cuántica

3 bytes eliminados, 19:24 17 ago 2016
sin resumen de edición
Si [[File:1HMQimage047.png]] y [[File:1HMQimage116.png]] son además ortogonales, se tiene [[File:1HMQimage118.png]], expresión ésta que justifica por qué la propiedad [[File:HMQimage007.png]] mencionada más arriba tiene el proyector indicado (Vanni 2010).
Dos nociones muy importantes en el formalismo de historias cuánticas son la noción de ''espacio muestral'' (Griffiths 1996, 2760;  1998, 1605) y, asociada a la anterior, la noción de ''contexto'' (Vanni, 2010, 48; Laura y Vanni 2010). Diremos que un particular ''espacio muestral'' asociado a una magnitud [[File:1HMQimage00.png]] es el conjunto de propiedades que queda determinado por una partición completa en subconjuntos disjuntos de su espectro. En forma más clara, si [[File:1HMQimage00.png]] es una magnitud representada por un operador en un espacio de Hilbert de dimensión [[File:1HMQimage017.png]] y su espectro viene dado por [[File:1HMQimage124.png]], entonces una partición con el requerimiento mencionado será por ejemplo [[File:1HMQimage126.png]], [[File:1HMQimage128.png]], [[File:1HMQimage130.png]], [[File:1HMQimage132.png]]. De esta manera, el espacio muestral asociado a la magnitud [[File:1HMQimage00.png]], con esa partición, quedará determinado por el conjunto de propiedades representadas por los proyectores de la forma [[File:1HMQimage135.png]]. La partición es disjunta porque cada [[File:1HMQimage137.png]] tiene intersección nula con los restantes, y es completa porque la unión de todos los [[File:1HMQimage137.png]] constituyen el espectro completo de [[File:1HMQimage00.png]]. Esto resulta en el hecho de que los [[File:1HMQimage142.png]] representen propiedades de valor, o rango de valores de [[File:1HMQimage00.png]], que son excluyentes y exhaustivas; por consiguiente, dichos [[File:1HMQimage142.png]] serán ortogonales, [[File:1HMQimage147.png]], y además sumarán la identidad del espacio de Hilbert del sistema [[File:1HMQimage149bis1HMQimage149.png]]. Se dice que los [[File:1HMQimage142.png]] que cumplen estas dos últimas propiedades forman una ''descomposición proyectiva'' de la identidad asociada a la magnitud [[File:1HMQimage00.png]]. Hacemos notar que los [[File:1HMQimage142.png]] no son necesariamente autoproyectores de, porque no necesariamente representan propiedades de valor único. Son suma de subconjuntos disjuntos de autoproyectores de [[File:1HMQimage00.png]]. Sólo en el caso particular de tener la partición más refinada posible del espectro de [[File:1HMQimage00.png]], dada por [[File:1HMQimage157.png]], tendremos que [[File:HMQimage163.png]]. En ese caso, los [[File:1HMQimage142.png]] son iguales a los autoproyectores de [[File:1HMQimage00.png]], y así [[File:1HMQimage149.png]] es la descomposición habitual de la identidad en términos de los autoproyectores de [[File:1HMQimage00.png]]. Otra cosa que es importante subrayar es que los proyectores que determinan una descomposición proyectiva conmutan entre sí; por lo tanto, representan propiedades cuánticas compatibles.
Un ''contexto'', por otro lado, es el conjunto de todas las propiedades formadas
Autores, Editores, Burócratas, Administradores
2246
ediciones

DIA

El contenido está disponible bajo la licencia © Instituto de Filosofía Universidad Austral 2015, salvo que se indique lo contrario.