Historias en mecánica cuántica

Leonardo Vanni
Universidad de Buenos Aires - Universidad Nacional de General Sarmiento

De DIA

La premisa básica del formalismo de historias cuánticas consiste en abandonar la descripción de los sistemas cuánticos en términos de la evolución del estado, regida por la ecuación de Schrödinger. Las evoluciones pasan a ser descriptas en términos de historias, las cuales son entendidas como secuencias estocásticas de propiedades a distintos tiempos. El logro del formalismo es que permite lidiar con las dificultades conceptuales que resultan de la estructura lógica de las propiedades cuánticas, que no respeta la estructura lógica clásica, y a la vez permite desprenderse de la peculiar relación que la interpretación ortodoxa establece entre la evolución del estado cuántico y la asignación de propiedades al sistema en consideración. Si bien el formalismo de historias no puede predecir qué historia se actualizará en el decurso de los eventos, puede determinar condiciones específicas que establecen el conjunto de historias posibles para las propiedades y tiempos considerados. Este conjunto es una suerte de “mapa" de las posibles evoluciones que puede desarrollar el sistema. Dichas evoluciones serán aquéllas que, con una fórmula de la probabilidad previamente definida, cumplan los axiomas de la probabilidad clásica. En términos lógicos, el conjunto de todas las historias posibles determina el universo de discurso del sistema, siendo cada historia considerada como una “proposición elemental de evolución”, es decir, la entidad mínima por medio de la cual es posible describir la dinámica del sistema.

En la presente entrada, en primer lugar presentaremos las bases mínimas necesarias para comprender los aspectos fundamentales de la estructura lógica de las propiedades cuánticas, y luego desarrollaremos dos versiones del formalismo de historias cuánticas: el de Historias Consistentes y el de Historias Contextuales.


1 Estructura de propiedades cuánticas  

La utilidad de cualquier teoría física consiste en su capacidad de describir las propiedades de los sistemas que estudia, operando con ellas en algún tipo de estructura lógica. Sólo así se podrá entender, explicar y predecir el comportamiento de esos sistemas. Para lograr esto, la teoría debe ser capaz de incorporar elementos formales capaces de representar dichas propiedades en un marco teórico específico.

Cuando hablamos de propiedades de un sistema, aquí nos estamos refiriendo a propiedades de valor que toman sus magnitudes. Por ejemplo, una magnitud fundamental de cualquier sistema físico es su energía HMQimage001.png. Asignar una determinada “propiedad de valor” a la magnitud energía es asignar o establecer un valor, o rango de valores a su energía. Así, HMQimage003.png“energía igual a 5 ergios”, HMQimage007.png“energía entre 5 y 7 ergios”, son ejemplos de propiedades de valor un sistema físico.

La mecánica clásica y la mecánica cuántica poseen diferentes elementos formales, sujetos a diferentes estructuras algebraicas, para representar sus propiedades. Estas diferencias son la base sobre la cual radica gran parte de las dificultades conceptuales encontradas a la hora de compatibilizar ambas teorías. En la física clásica, las propiedades de valor de un sistema pueden representarse por subconjuntos o regiones en el llamado espacio de fases del sistema (Hughes 1989, 58). El estado, por otro lado, se representa con un punto en ese espacio. Una propiedad se verifica en el sistema si el estado, como punto, pertenece a la región que representa la propiedad. Esto determina una particular estructura de propiedades en términos de operaciones entre conjuntos.

En términos lógicos, cada propiedad, o más exactamente, cada clase de propiedades lógicamente equivalentes, se puede identificar con una proposición, la proposición que adjudica la propiedad al sistema (Hughes 1989, 182). Con esta identificación, podemos transformar la estructura de propiedades en una estructura lógica. En el caso clásico esto se logra definiendo los conectivos lógicos de conjunción 1HMQimage007bis.png, disyunción 1HMQimage009.png, y negación 1HMQimage011.png en términos de operaciones de intersección, unión y complemento entre conjuntos respectivamente (Hughes 1989, 181-182; Omnès 1999, 101; Vanni 2010, 36). La estructura lógica de propiedades así establecida responde a un algebra booleana, la cual es en esencia el álgebra que establece las operaciones entre conjuntos (Hughes 1989, 178-184; Bub 1997, 15-22; Boole 2009). En este tipo de estructura es posible además establecer una relación de implicación, de suma importancia para los razonamientos lógicos, que es compatible con la relación de inclusión entre conjuntos y permite una asignación de verdad consistente sobre la estructura lógica (Hughes 1989, 202; Omnès 1992, 347; Omnès 1994, 184-185; Bub 1997, 15-20). Sin embargo, esto último y muchas de las características booleanas de la estructura lógica clásica dejan de ser válidas en la mecánica cuántica. Para comprender este punto, es necesario explicar cómo se describen cuánticamente las magnitudes físicas y sus propiedades de valor.

En la mecánica cuántica, las magnitudes físicas se representan mediante operadores hermíticos que actúan sobre vectores en el llamado espacio de Hilbert 1HMQimage013.png del sistema (Hughes 1989, 63-65; Ballentine 1990, 2-8; Sakurai 1994, 14-16). Aclaramos aquí que, aunque la magnitud no es el objeto que la representa en la teoría, en este caso un operador, en lo que sigue la identificaremos con el operador. Así diremos “magnitud 1HMQimage00.png” y escribiremos el operador correspondiente.

Cada espacio de Hilbert 1HMQimage013.png tiene subespacios, que son subconjuntos de 1HMQimage013.png que contienen el vector nulo, y además son cerrados ante sumas y multiplicaciones por un escalar (Hughes 1989, 35). Podemos decir que, en mecánica cuántica, las magnitudes físicas toman valores sobre ciertos subespacios en el espacio de Hilbert del sistema. Esto se puede ver al considerar que, debido a la llamada descomposición espectral (Hughes 1989, 50; Ballentine 1990, 10-11), cualquier operador 1HMQimage00.png hermítico en un espacio de Hilbert de dimensión igual a 1HMQimage017.png (suponiendo por simplicidad el caso discreto) se puede escribir de la forma

1HMQimage019.png
(1.1)

donde, en la llamada notación de Dirac, los 1HMQimage021.png son operadores proyectores sobre el subespacio 1HMQimage023.png de dimensión uno (rectas) generado por el vector 1HMQimage025.png  (Hughes 1989, 64). El conjunto de los HMQimage027.png forman una base ortonormal del espacio de Hilbert (Ballentine 1990, 9: Sakurai 1994 18-19), y cada vector 1HMQimage025.png es llamado autovector de 1HMQimage00.png. Por otro lado, el conjunto 1HMQimage028.png es un conjunto de números reales (parametrizados discretamente por el índice 1HMQimage035.png) llamado espectro de 1HMQimage00.png, y cada valor 1HMQimage038.png es llamado autovalor de 1HMQimage00.png (Hughes 1989, 42-43; Ballentine 1990, 8; Sakurai 1994, 17-19). A veces también se menciona a los 1HMQimage021.png como autoproyectores de 1HMQimage00.png. Como el conjunto de los 1HMQimage027.png son ortonormales, los autoproyectores 1HMQimage047.png correspondientes resultan ser ortogonales: esto significa que 1HMQimage049.png, donde el símbolo 1HMQimage051.png es igual a 1 si 1HMQimage055.png, y es 0 en caso contrario.

Haciendo uso de la expresión de 1HMQimage00.png (1.1), es muy fácil ver que 1HMQimage060.png (Sakurai 1994, 17). Así decimos que la magnitud HMQimage00.png toma valor 1HMQimage038.png sobre el subespacio 1HMQimage023.png generado por 1HMQimage025.png porque al aplicar 1HMQimage00.png sobre 1HMQimage025.png, nos devuelve simplemente el valor 1HMQimage038.png multiplicado por 1HMQimage025.png. Así, los distintos valores 1HMQimage028.png que participan en la descomposición espectral son los posibles valores que puede tomar la magnitud 1HMQimage00.png, los cuales pueden ser corroborados en una medición de dicha magnitud (Hughes 1989, 64). Lo central aquí es que cada posible valor de 1HMQimage00.png queda naturalmente asociado al subespacio 1HMQimage023.png y, por lo tanto, al proyector 1HMQimage021.png que proyecta sobre 1HMQimage023.png. Debido a esta asociación, las propiedades que asignan un valor, o rango de valores, a la magnitud 1HMQimage00.png pueden ser representadas por el proyector asociado a ese valor, o rango de valores. Por ejemplo, la propiedad HMQimage003.png"1HMQimage00.png con valor igual a 5” se podrá representar por el proyector 1HMQimage073.png. En cambio, la propiedad HMQimage007.png"1HMQimage00.png con valor mayor o igual a 5 y menor o igual que 7”, se representará por el proyector 1HMQimage077.png. Como hemos dicho, cada proyector se corresponde con un subespacio en el espacio de Hilbert, por lo que también podemos representar cada propiedad como un subespacio. Esto es de hecho lo que en general se hace en la bibliografía. Aquí, sin embargo, orientados a lo que el formalismo de historias cuánticas necesita, buscaremos tratar las propiedades principalmente en términos de proyectores.

Entre las distintas propiedades que pueden predicarse, existen dos muy particulares: la propiedad universal, también llamada identidad 1HMQimage079.png, que siempre podrá asignarse al sistema; y la propiedad nula, también llamada cero 1HMQimage057.png, que nunca podrá asignarse al sistema. Identificaremos la propiedad universal 1HMQimage079.png con el proyector identidad en el espacio de Hilbert del sistema, que es el operador que, aplicado a cualquier vector, lo deja idéntico. Es muy útil representar este operador por la suma de todos los posibles autoproyectores asociados a una magnitud dada, es decir 1HMQimage083.png (Ballentine 1990, 10; Sakurai 1994, 19). Sin embargo esa representación no es única; volveremos a esta cuestión más abajo, con la importante noción de espacio muestral. Por otro lado, la propiedad nula se podrá representar por el proyector nulo del espacio de Hilbert del sistema, es decir por el 1HMQimage057.png visto como operador, que transforma cualquier vector en  el vector nulo (Hughes 1989, 15).

Dentro del espacio de Hilbert se pueden definir tres operaciones básicas entre subespacios, que dan como resultado otro subespacio: la intersección, la suma, y el complemento ortogonal de subespacios (Hughes 1989, 190-191; Vanni y Laura 2008; Vanni 2010). Con el conjunto de todos los subespacios del espacio de Hilbert y estas operaciones, queda definida una estructura de propiedades cuánticas, la cual en este caso no resulta booleana (Mittelstaedt 1978, 27; Hughes 1989, 201-206; Bub 1997, 22-30; Vanni 2010).

Como en el caso clásico, es posible identificar clases de propiedades lógicamente equivalentes con proposiciones, y así derivar de la estructura de propiedades una estructura lógica, donde los conectivos conjunción 1HMQimage007bis.png, disyunción 1HMQimage009.png, y negación 1HMQimage011.png se corresponden ahora con las operaciones de intersección, suma, y complemento ortogonal, respectivamente. El álgebra de la estructura lógica cuántica resulta no ser booleana. Adicionalmente, no es posible representar una relación de inferencia lógica asociada a la inclusión de subespacios, como uno esperaría de su análogo clásico: debido a la pérdida de características booleanas, en el caso cuántico no es posible definir una implicación compatible con una asignación de verdad consistente (Hughes 1989, 206; Omnès 1994, 185). Bajo esta limitación, muchas veces las inferencias en mecánica cuántica son elaboradas en función de probabilidades extremas 0 o 1 (Omnès 1994, 157, Omnès 1998, 142).

Como estamos interesados en representar a las propiedades en términos de proyectores y no en términos de sus correspondientes subespacios, debemos encontrar qué operaciones entre proyectores corresponden a las operaciones lógicas mencionadas. Antes de proseguir, sin embargo, es necesaria una aclaración respecto de las operaciones posibles entre propiedades incompatibles. En mecánica cuántica, dos magnitudes 1HMQimage00.png y 1HMQimage096.png se dicen incompatibles si sus correspondientes operadores no conmutan, esto es, si su conmutador no es nulo (Sakurai 1994, 29). El conmutador entre 1HMQimage00.png y 1HMQimage096.png se define como 1HMQimage102.png. Si dos magnitudes son incompatibles, cumplen una relación de incerteza y, por consiguiente no es posible predicar sus propiedades de valor de modo simultáneo, es decir, como conjunciones (Ballentine 1990, 183; Sakurai 1994, 35). La postura tradicional consiste en sostener que las conjunciones tienen sentido sólo si corresponden a magnitudes compatibles. Esta es la postura adoptada en el formalismo de historias, sosteniendo además que no sólo las conjunciones, sino también las disyunciones tienen sentido sólo si corresponden a magnitudes compatibles. (Griffiths 1998, 1609; Griffiths y Omnès 1999, 28; Griffiths 2003, 1426). Otra postura sin embargo es la de la llamada lógica cuántica (Birkhoff y von Neumann 1936), que considera todas las operaciones bien definidas aun cuando las magnitudes asociadas sean incompatibles. En este caso, la expresión para estas operaciones en términos de proyectores, en particular para la intersección y la suma de subespacios, no es trivial (Mittelstaedt 1978, 20-21; Vanni 2010, 45).

Sin embargo, cuando se trata de la conjunción, disyunción, y negación  de propiedades de valor de magnitudes compatibles, entonces las operaciones entre los correspondientes proyectores pueden definirse fácilmente. El operador de la conjunción es simplemente el producto de los operadores, es decir:

1HMQimage106.png
(1.2)

El operador de la disyunción, por otro lado, es la suma de los operadores menos el de la intercesión:

1HMQimage110.png
(1.3)

Y finalmente, el de la negación es:

1HMQimage114.png
(1.4)

Si 1HMQimage047.png y 1HMQimage116.png son además ortogonales, se tiene 1HMQimage118.png, expresión ésta que justifica por qué la propiedad HMQimage007.png mencionada más arriba tiene el proyector indicado (Vanni 2010).

Dos nociones muy importantes en el formalismo de historias cuánticas son la noción de espacio muestral (Griffiths 1996, 2760;  1998, 1605) y, asociada a la anterior, la noción de contexto (Vanni, 2010, 48; Laura y Vanni 2010). Diremos que un particular espacio muestral asociado a una magnitud 1HMQimage00.png es el conjunto de propiedades que queda determinado por una partición completa en subconjuntos disjuntos de su espectro. En forma más clara, si 1HMQimage00.png es una magnitud representada por un operador en un espacio de Hilbert de dimensión 1HMQimage017.png y su espectro viene dado por 1HMQimage124.png, entonces una partición con el requerimiento mencionado será por ejemplo 1HMQimage126.png, 1HMQimage128.png, 1HMQimage130.png, 1HMQimage132.png. De esta manera, el espacio muestral asociado a la magnitud 1HMQimage00.png, con esa partición, quedará determinado por el conjunto de propiedades representadas por los proyectores de la forma 1HMQimage135.png. La partición es disjunta porque cada 1HMQimage137.png tiene intersección nula con los restantes, y es completa porque la unión de todos los 1HMQimage137.png constituyen el espectro completo de 1HMQimage00.png. Esto resulta en el hecho de que los 1HMQimage142.png representen propiedades de valor, o rango de valores de 1HMQimage00.png, que son excluyentes y exhaustivas; por consiguiente, dichos 1HMQimage142.png serán ortogonales, 1HMQimage147.png, y además sumarán la identidad del espacio de Hilbert del sistema 1HMQimage149.png. Se dice que los 1HMQimage142.png que cumplen estas dos últimas propiedades forman una descomposición proyectiva de la identidad asociada a la magnitud 1HMQimage00.png. Hacemos notar que los 1HMQimage142.png no son necesariamente autoproyectores de, porque no necesariamente representan propiedades de valor único. Son suma de subconjuntos disjuntos de autoproyectores de 1HMQimage00.png. Sólo en el caso particular de tener la partición más refinada posible del espectro de 1HMQimage00.png, dada por 1HMQimage157.png, tendremos que HMQimage163.png. En ese caso, los 1HMQimage142.png son iguales a los autoproyectores de 1HMQimage00.png, y así 1HMQimage149.png es la descomposición habitual de la identidad en términos de los autoproyectores de 1HMQimage00.png. Otra cosa que es importante subrayar es que los proyectores que determinan una descomposición proyectiva conmutan entre sí; por lo tanto, representan propiedades cuánticas compatibles.

Un contexto, por otro lado, es el conjunto de todas las propiedades formadas a partir de las disyunciones del espacio muestral, es decir a partir de las disyunciones de los elementos 1HMQimage142.png que forman una descomposición proyectiva de la identidad. Al ser los 1HMQimage142.png ortogonales, las disyunciones que se generan a partir de éstos se reducen a simples sumas sobre los 1HMQimage142.png; por lo tanto, cualquier propiedad del contexto se podrá representar como 2HMQimage003.png, con 2HMQimage005.png igual o bien a 0, o bien a 1. Como vemos un contexto es generado completamente por un espacio muestral, y las propiedades asociadas a los 1HMQimage142.png en el espacio muestral que generan dicho contexto, son llamadas elementos mínimos del contexto. De este modo, un contexto es el conjunto de todas las propiedades que se pueden predicar respecto de la magnitud 1HMQimage00.png y, por supuesto, de cualquier otra magnitud que conmuta con 1HMQimage00.png, ya que en ese caso tendrán un conjunto común de autoproyectores (Sakurai 1994, 29) y, por consiguiente podrán compartir un contexto común. Para cada magnitud 1HMQimage00.png, existirá un contexto que determina el universo de discurso de sus propiedades, las cuales son representadas por operadores que conmutan. Dos magnitudes incompatibles, es decir, cuyos operadores no conmutan, no podrán pertenecer a un contexto común.

Es importante notar que, dentro de cada contexto, el conjunto de sus propiedades con las operaciones lógicas definidas arriba, forman una subestructura booleana (Vanni 2010, 48-49). Esto se debe esencialmente al hecho de que, en cada contexto, los proyectores que representan las propiedades dentro de él conmutan entre sí. Las características cuánticas asociadas a la pérdida de booleaneidad aparecen al combinar propiedades de distintos contextos. Esto puede verse en la representación dada por la Figura 1.


Figura 1

Tenemos las propiedades 2HMQimage014.png y su negación 2HMQimage016.png correspondientes respectivamente a los subespacios 2HMQimage018.png y 2HMQimage020.png, en la figura representados por los ejes cartesianos en un espacio de dimensión igual a 2. Consideremos que una propiedad 2HMQimage023.png, representada por el subespacio 2HMQimage025.png, se asigna al sistema. Como vemos, el subespacio 2HMQimage025.png no está incluido en 2HMQimage018.png, pero llamativamente, tampoco en su complemento 2HMQimage020.png.

En términos de propiedades tenemos que dado 2HMQimage023.png, resulta 2HMQimage030.png, ya que las rectas asociadas a 2HMQimage025.png y 2HMQimage018.png tienen al cero como intersección; pero por la misma razón, se tiene también que 2HMQimage034.png. Esto es una característica que no tiene precedente clásico cuando pensamos a las propiedades en términos de conjuntos. Si un conjunto tiene intersección nula con otro, no puede tener también intersección nula con su complemento. Cuánticamente esta idea lógica elemental, propia de una estructura booleana, no se cumple.

Estas características cuánticas se han puesto de manifiesto en el ejemplo porque se ha predicado sobre propiedades pertenecientes a distintos contextos. Aquí 2HMQimage036.png es el espacio muestral que determina un contexto, donde valen las características booleanas, y 2HMQimage038.png es el espacio muestral que determina otro contexto, donde también valen las características booleanas. Las características booleanas se pierden, sin embargo, cuando se intenta incorporar los dos contextos en otro que los contenga. Volveremos a encontrarnos con esta peculiaridad luego de definir una noción generalizada de contexto de historias.

Hasta ahora hemos hablado de propiedades, pero además de ellas es necesario encontrar una representación de la noción de estado, por medio de la cual se asignan dichas propiedades al sistema. Pues bien, la forma más básica de representar el estado de un sistema cuántico es por medio de un vector de norma igual a uno en el espacio del Hilbert, que denotaremos con 2HMQimage041.png y llamamos vector de estado (Hughes 1989, 63; Sakurai 1994, 11). Una propiedad de valor correspondiente a una magnitud física, con certeza podrá asignarse a un sistema, si el vector de estado del sistema pertenece al subespacio asociado a la propiedad, y con certeza no podrá ser asignada si pertenece al complemento ortogonal de dicho subespacio. Como vemos, esto tiene una reminiscencia de la situación clásica en términos de pertenencia del estado clásico a una cierta región o a su complemento en el espacio de fase. Sin embargo, las diferencias son muchas, el estado puede no pertenecer ni al subespacio asociado a la propiedad, ni al complemento ortogonal de dicho subespacio; en este caso no puede afirmarse con certeza ni que la propiedad se asigna al sistema ni que la propiedad no se asigna.

En el formalismo de operadores de estado, el vector de estado 2HMQimage041.png también puede ser representado por el correspondiente operador de estado 2HMQimage043.png que, como vemos, también es un proyector, y por lo tanto también representativo de una propiedad (Ballentine 1990, 37). Estados de este tipo, representados por un proyector, son llamados estados puros porque asignan certezas pero, a diferencia del caso clásico, no asignan certezas a todas las propiedades (Hughes 1989, 92); asignan certeza sólo un conjunto determinado de propiedades: el conjunto de propiedades representadas por el mismo proyector de estado 2HMQimage044.png, con el agregado de todas aquéllas representadas por proyectores ortogonales a 2HMQimage044.png.

En el caso más general, el estado de un sistema cuántico es representado por una mezcla de estados puros dada por 2HMQimage048.png, donde los 2HMQimage050.png son reales positivos y suman uno (Ballentine 1990, 37; Sakurai 1994, 174-177). En este caso, el estado no puede asignar certeza a ninguna propiedad, sino sólo asigna probabilidades. La asignación de probabilidades está dada por la llamada regla de Born y vale para estados puros o no (Hughes 1989, 147; Ballentine 1990, 42). Si 2HMQimage051.png es el operador de estado, y 2HMQimage053.png es el proyector asociado a una propiedad de valor 2HMQimage023.png, entonces dicha propiedad puede ser asignada al sistema con una probabilidad dada por

2HMQimage056.png
(1.5)

donde el símbolo 2HMQimage057.png significa la traza del producto 2HMQimage059.png (Hughes 1989, 136-137; Ballentine 1990, 7; Sakurai 1994, 38).

La ecuación fundamental que rige la evolución temporal de un estado cuántico es la llamada ecuación de Schrödinger (Hughes 1989, 77-78; Ballentine 1990, 68; Sakurai 1994, 71-72). La información dinámica de esta evolución es a menudo representada en términos de la aplicación sobre el vector de estado del llamado operador de evolución, el cual, por su puesto, queda determinado por la ecuación Schrödinger. Llamaremos 2HMQimage062.png al operador de evolución del tiempo 2HMQimage063.png al tiempo 2HMQimage065.png. Este operador cumple 2HMQimage066.png, 2HMQimage069.png, donde el símbolo 2HMQimage071.png significa hermítico conjugado (Sakurai 1994, 15). El operador 2HMQimage062.png es tal que, aplicado a un vector de estado al tiempo 2HMQimage063.png, nos devuelve el estado al tiempo 2HMQimage065.png, es decir 2HMQimage075.png (Hughes 1989, 145-146; Ballentine 1990, 68-69; Sakurai 1994, 68-72).

Al considerar que el estado evoluciona en el tiempo, las magnitudes físicas son consideradas fijas. Este es el llamado marco de Schrödinger. Los operadores que representan magnitudes físicas en el marco de Schrödinger son llamados operadores de Schrödinger (Ballentine 1990, 69). En el marco de Schrödinger los estados se indicaran con dependencia temporal, y las magnitudes físicas no. Sin embargo, haciendo uso del mismo operador de evolución, es posible considerar una descripción temporal físicamente equivalente donde el estado es asumido independiente del tiempo, y son las magnitudes físicas las que se consideran dependientes del tiempo. Este es el llamado marco de Heisenberg. Una magnitud física representada por un operador 1HMQimage00.png en el marco de Schrödinger se relaciona con la misma magnitud física 2HMQimage078.png en el marco de Heisenberg por medio de la formula

2HMQimage080.png
(1.6)

donde 2HMQimage063.png es un tiempo de referencia usualmente tomado como cero (Ballentine 1990, 68-69; Sakurai 1994, 82).

Es importante enfatizar que un sistema cuántico evoluciona en el tiempo (de acuerdo con la ecuación de Schrödinger) de forma completamente determinista, de modo que conociendo el estado a un tiempo inicial 2HMQimage065.png, queda determinado con certeza el estado para todo tiempo posterior 2HMQimage084.png. Pese a ello, y aunque las magnitudes también puedan considerarse que evolucionan en el marco de Heisenberg en forma determinista, la evolución de los valores que dichas magnitudes pueden adoptar en términos de los resultados obtenidos en las mediciones es completamente indeterminista. Es en este punto que se recurre a una descripción probabilística, con la fórmula para las probabilidades dada por la regla de Born. (Hughes 1989, 78). Esta peculiar relación entre la evolución determinista del estado, y la asignación de propiedades en forma indeterminista producto de la medición, ha sido objeto de todo tipo de discusión y debate en el marco del llamado problema de la medición, del cual volveremos hablar más adelante.

Con esta breve introducción de las principales características formales de la mecánica cuántica, en especial referida a su representación de propiedades, estamos en condiciones de abordar los distintos formalismos de historias cuánticas. Comenzaremos con el de Historias Consistentes, que puede considerarse como el formalismo fundacional de los demás formalismos de historias cuánticas.


2 Historias consistentes  

El formalismo de Historias Consistentes fue desarrollado inicialmente por Robert Griffiths en la década de los ‘80 (Griffiths 1884). Más tarde, de la mano de Roland Omnès, y posteriormente con los trabajos de Murray Gell-Mann y James Hartle, se desarrollaron ciertas variantes, aunque sin modificar la esencia de la propuesta (Omnès 1988; Gell-Mann y Hartle 1990).

La idea central del formalismo consiste en describir la evolución de un sistema cuántico en términos de historias construidas por medio de secuencia de propiedades consideradas a distintos tiempos. Bajo esta concepción, se prescinde de la noción de estado como el elemento que determina la evolución del sistema y que asigna propiedades de valor a las magnitudes. Ya sea el estado con su evolución, y las propiedades con su asignación, pasan a estar integradas en la misma noción de historia. Es cada historia, constituida de distintas propiedades a distintos tiempos, la que da cuenta de la evolución del sistema, la cual es considerada como una secuencia completamente estocástica desde su definición, y no debido a algún proceso de medición por medio del cual se introducen las probabilidades dadas por la regla de Born. El concepto de medición se despoja completamente de este papel especial de introducir el indeterminismo en la teoría (injustificado, por otro lado, puesto que los aparatos de medición están compuestos de los mismos sistemas microscópicos que la teórica cuántica pretende describir).

En el formalismo de historias consistentes, todas las dependencias temporales se consideran indeterministas. Esto no significa que la ecuación de Schrödinger deje de ser tenida en cuenta: simplemente es considerada para otro propósito. Por medio el operador de evolución, la ecuación de Schrödinger permitirá generar una noción de peso probabilístico a cada historia, lo cual tendrá una importancia fundamental. Sin embargo antes de presentar esta cuestión, será necesario establecer una estructura lógica de historias dentro de la cual cada historia es pensada como una proposición elemental de evolución del sistema. Empezaremos por la construcción basada en los trabajos de Griffiths.


2.1 La estructura lógica de historias de Griffiths  

Comencemos considerando un sistema cuántico en el marco de Schrödinger (donde las magnitudes físicas son consideradas fijas en el tiempo), con un espacio de Hilbert de dimensión 1HMQimage017.png, al que se quiere describir en términos de historias. Supongamos una secuencia de tiempos ordenada 2HMQimage087.png, y en cada tiempo 2HMQimage088.png consideramos una cierta magnitud física 2HMQimage090.png del sistema. En ese tiempo asumimos una particular descomposición proyectiva asociada 2HMQimage090.png, la cual suponemos representada por un conjunto de proyectores 2HMQimage093.png correspondiente al rango de valores 2HMQimage095.png del espectro de 2HMQimage090.png al tiempo 2HMQimage088.png. Por tratarse de una descomposición proyectiva, los 2HMQimage093.png deberán cumplir (para cada 2HMQimage096.png) 2HMQimage099.png,  y 2HMQimage101.png, siendo 2HMQimage103.png la identidad del espacio de Hilbert del sistema. El conjunto de proyectores 2HMQimage093.png representan las propiedades de rango de valor en 2HMQimage095.png que conforman el espacio muestral asociado a la magnitud 1HMQimage00.png en el tiempo 2HMQimage088.png. De este modo, tendremos un espacio muestral de propiedades a cada tiempo.

El siguiente paso es construir un espacio muestral de secuencias de propiedades tomadas del espacio muestral a cada tiempo, es decir, un espacio muestral de historias, que vistas como propiedades compuestas (de propiedades a distintos tiempos) puedan ser representadas por proyectores que constituyan una descomposición proyectiva de la identidad en un espacio de Hilbert de historias. La idea es que al definir operaciones lógicas dentro del espacio muestral de historias, dichas historias también puedan considerarse como proposiciones, proposiciones mínimas de evolución de cuyas disyunciones se pueda generar un contexto de historias, noción que, como hemos visto, nos asegura una estructura lógica booleana. El contexto de historias, con las magnitudes consideradas a los tiempos considerados, formará un universo de discurso de las evoluciones del sistema y respetará las leyes de la estructura lógica clásica.

Sin embargo, se presenta aquí la dificultad de cómo representar historias para construir su espacio muestral en términos de proyectores que constituyan una descomposición proyectiva, y así puedan generar el correspondiente contexto de historias. El problema consiste en incorporar la representación de las distintas propiedades que participan a distintos tiempos, aun cuando en general éstas pueden resultar incompatibles.

En el formalismo original de Griffiths, este problema se logra sortear considerando que la descripción de distintas propiedades de un mismo sistema a distintos tiempos es equivalente a la descripción de cada una de esas propiedades en un sistema dentro de una colección de sistemas considerados simultáneamente (Griffiths 1996, 2761; Griffiths 2002, 112). Dicho de otra manera, se asume que, para cada 2HMQimage096.png, el conjunto de los 2HMQimage093.png constituye la descomposición proyectiva asociada a la variable 2HMQimage090.png del sistema etiquetado con el índice 2HMQimage096.png dentro de un conjunto de 2HMQimage109.png sistemas idénticos. De este modo, el proyector de una historia puede ser construido mediante el producto tensorial de los proyectores 2HMQimage093.png. Así, una posible historia podrá representada por:

2HMQimage111.png
(2.1)

donde 2HMQimage112.png indica el índice múltiple dado por 2HMQimage114.png, siendo cada 2HMQimage115.png el índice que etiqueta un proyector en descomposición proyectiva asociada a la variable  al tiempo 2HMQimage088.png y que, por lo tanto, representa la propiedad de valor de 2HMQimage090.png en el rango 2HMQimage095.png. El símbolo 2HMQimage118.png representa el producto tensorial habitual (Hughes 1989, 148-149; Griffiths 2002, 82-85). Debido a que el espacio de Hilbert de una colección de sistemas es el producto tensorial de cada espacio de Hilbert por separado, tendremos que el espacio de  Hilbert de historias, que llamaremos