===¿Qué es la ‘metafísica analítica’?===
En la ''Metafísica'', Aristóteles caracteriza al tipo de indagación que está realizando como “ciencia” o “teoría del ente en cuanto ente” (IV, 1, 1003a 21). La forma en que se hace esta indagación de qué sea el ente es considerando los diferentes sentidos en que se dice el verbo “ser”, cuyo caso focal de aplicación es la ''ousía'' o sustancia (VII, 1, 1028a 14-15). Por esto, la indagación acerca de qué sea el ente viene a ser la indagación de qué sea la ''ousía'' (VII, 1, 1028b 3-4). Diferentes categorías de entidades admiten la atribución del verbo “ser” (VII, 1, 1028a 10). Estas diferentes categorías, sin embargo, no están a la par en cuanto a su prioridad ontológica. Cualidades, cantidades y relaciones son ontológicamente dependientes de la sustancia y, por ello, ‘son’ en un sentido derivativo (VII, 1, 1028a 23-25). Las líneas centrales de este tipo de indagación no resultan muy diferentes de lo que pretende hacer un metafísico contemporáneo. Típicamente, un metafísico va a proponer categorías de entidades y, luego, va a describir y justificar relaciones de dependencia entre ellas, de manera de generar una estructura en la que se pueda discriminar lo que es ontológicamente prioritario y lo que es ontológicamente derivativo. Por supuesto, muchos metafísicos contemporáneos no admitirán que existan ‘sustancias’ –tal como las entendía Aristóteles– o no admitirán la existencia de cualidades, cantidades y relaciones como entidades numéricamente diferentes de los objetos particulares. Esos metafísicos propondrán otras categorías como prioritarias, o postularán la reducción de algunas de ellas respecto de otras. En cualquier caso, van a proponer un catastro de tipos básicos de cosas que existen y cuáles de ellas dependen de cuáles otras, o cuáles de ellas fundan cuáles otras, tal como lo ha hecho Aristóteles. Si esto es así, si el tipo de indagación que hace un metafísico contemporáneo no difiere –en lo sustantivo– de lo que se ha hecho tradicionalmente al hacer metafísica, ¿por qué razón se requiere caracterizar una disciplina como ‘metafísica analítica’ y no llamarla simplemente ‘metafísica’ a secas? La razón para ello es principalmente histórica y tiene que ver con la evolución que ha experimentado la tradición filosófica analítica el siglo pasado.
<br />
====La metafísica de los padres fundadores====
Nótese que un designador rígido que hace referencia al ‘mismo’ objeto en diferentes mundos posibles obliga a considerar qué es lo que determina la identidad de ese objeto bajo circunstancias posibles diferentes de lo que sucede de hecho. Si Napoleón en el mundo actual es un general francés vencedor de la batalla de Austerlitz y en otro mundo posible es un niño que muere de tifus a los cinco años, entonces debemos suponer que ser un general, vencer en una batalla o sufrir una enfermedad no son rasgos o características que determinen la identidad de Napoleón. Habrá rasgos o características de Napoleón que se mantendrán constantes en todos los mundos posibles en los que existe y otras que no lo harán. La identidad de Napoleón parece estar determinada por las primeras y no por las segundas. Se puede apreciar, entonces, que la cuestión de cuáles sean las condiciones de identidad de un objeto en diferentes mundos posibles es la cuestión acerca de cuál sea la ‘esencia’ de ese objeto, esto es, de qué es lo que determina ontológicamente que ese objeto sea lo que es. Las propiedades que quedan fuera de la ‘esencia’ de un objeto son, en cambio, propiedades accidentales. La discriminación entre propiedades esenciales y accidentales no aparece aquí como un invento metafísico, sino como algo que resulta de nuestras prácticas ordinarias por las que hacemos suposiciones contrafácticas acerca de lo que podría o no sucederle a un objeto. Si consideramos, por ejemplo, acerca de si Napoleón pudo haber perdido en Austerlitz, estamos suponiendo que vencer en Austerlitz es accidental para Napoleón. Si, en cambio, nos parece que Napoleón no pudiese haber sido una bacteria, esto es porque suponemos que Napoleón es esencialmente un ser humano, lo que es incompatible con ser una bacteria.
Kripke también sostiene que las identidades son necesarias, si es que son verdaderas. La opinión prevalente entonces era que claramente hay identidades contingentes. Por ejemplo, Héspero (el lucero de la mañana) = Fósforo (el lucero de la tarde), pero esto es algo que ha llegado a saberse por investigación empírica y no por mera reflexión a priori. Pero, si es así, parece que podría haber sido que hubiésemos descubierto que Héspero no es el mismo cuerpo celeste que Fósforo, si es que otra evidencia empírica se hubiese recabado. Por el contrario, si todas las identidades fuesen necesarias, entonces debería poder saberse a priori que Héspero = Fósforo. Esto es, debería bastar solamente la reflexión acerca del contenido de ese enunciado y de sus constituyentes para percatarse de que debe ser verdadero. Pero esto parece sencillamente falso. Por mucho que se reflexione sobre el significado de los nombres propios “Héspero” y “Fósforo”, no parece inscrito en el significado de esos nombres que deban tener el mismo referente. Se puede apreciar que subyace a estas asociaciones la suposición de que algo es necesario si y sólo si podemos llegar a conocerlo a priori, y algo es contingente si y sólo si podemos llegar a conocerlo a posteriori. Así había sido postulado por Kant (cf. ''Crítica de la razón pura'', B1-B30), por lo menos, y la filosofía posterior no lo había puesto en cuestión. Había resultados formales bien conocidos de lógica modal cuantificacional que justificaban la necesidad de la identidad, lo que choca con esa identificación (cf. Marcus, 1961), pero eran considerados como una ‘paradoja’, esto es, como un resultado aparentemente válido que lleva a una conclusión notoriamente falsa, lo que obliga a averiguar cuál es la fuente del error. El razonamiento depende de dos premisas generalmente aceptadas: (i) que para todo ''x'', es necesario que: ''x'' = ''x''; y (ii) que si ''x'' = ''y'', entonces si ''x'' es ''F'', ''y'' es ''F'' (principio de indiscernibilidad de los idénticos). Supóngase ahora que dos objetos cualesquiera, ''a'' y ''b'', son idénticos. Entonces, por (ii) toda propiedad de ''a'' debe también poseerla ''b''. Pero, por el principio (i), es necesario que: ''a'' = ''a''. Entonces ''a'' instancia la propiedad de ''ser necesariamente idéntico a'' ''a''. Pero si ''a'' posee esta propiedad, también debe poseerla ''b''. Entonces ''b'' es necesariamente idéntico a ''a''. Así, si ''a'' = ''b'', es necesario que ''a'' = ''b''.
Kripke hace notar, en contra de la opinión prevalente hasta entonces, que el hecho de que algo sea necesario o contingente no tiene, de por sí, que ver con la forma en que ese hecho pueda llegar a conocerse –si es que puede conocerse (cf. Kripke 1980, 34-48). El que un hecho sea necesario tiene que ver con que las cosas no podrían ser de otro modo. El que un hecho sea contingente tiene que ver con que las cosas podrían ser diferentes. Esto es, tiene que ver con desarrollos alternativos de los cursos de acontecimientos, dada cual sea su naturaleza, y no con los modos de acceso que nosotros tengamos para ellos. Se trata de una cuestión metafísica y no epistemológica. Por lo menos, no es obvio que lo metafísico y lo epistemológico deban fusionarse en cuanto a la modalidad. Se requiere una argumentación para ello, la que no ha sido dada. Así, nada impide que existan verdades necesarias, pero cuya justificación es a posteriori. Las identidades necesarias son un ejemplo de este tipo de verdades. Si Héspero = Fósforo, entonces es necesario que Héspero = Fósforo, pero esta es una verdad conocida mediante observación empírica.
El llamado ‘problema de los universales’ es la cuestión acerca de cómo pueden diferentes objetos llegar a ser –en algún sentido– algo unificado. Se lo ha llamado, por esto, como el problema de ‘lo uno en lo múltiple’. Si dos objetos particulares son cubos perfectos, entonces parece haber algo que esos objetos comparten. Esto es, que dos objetos sean cubos perfectos parece implicar que hay una entidad de cierto tipo, a saber, ''ser un cubo perfecto''. Desde Platón se ha pensado que esto es una razón para postular características o propiedades numéricamente diferentes de los objetos que las instancien y que –por su naturaleza– pueden encontrarse ejemplificadas en diferentes objetos particulares. Una entidad de este tipo es lo que ha sido denominado tradicionalmente un ‘universal’. Durante todo el siglo pasado se siguió discutiendo acerca de los universales, pero con diferentes énfasis. El enfoque de partida fue, como es de esperar, el del compromiso ontológico. Señala D. F. Pears:
¿Existen los universales? Esta pregunta fue debatida por tanto tiempo y con vehemencia, porque se la consideró equivocadamente como una cuestión fáctica acerca de un dominio etéreo de ser. ¿Pero por qué se cometió este error? Un diagnóstico es que los términos generales fueron asimilados tácitamente a nombres propios, y que, una vez que esta práctica es denunciada, se vuelve inocua, pero ya no hay razón para mantenerla. (Pears, 1951, 44).
La razón que existiría para justificar que hay universales sería, para Pears, un error semántico. Hay razones para postular la existencia de objetos de cierto tipo si es que tales objetos son entidades que ‘nombramos’. Si hay un nombre “''n''” que designa a tal entidad, entonces los enunciados en los que aparece tal nombre autorizan inferir –por generalización existencial en lógica de primer orden– que hay algo de lo que se hace la atribución del caso[[#1|<sup>1</sup>]]<span id=".">. Deberíamos admitir la existencia de universales si es que hubiese nombres auténticos para hacer referencia a ellos, pero no los hay –de acuerdo con Pears. Hay predicados en nuestros lenguajes que ‘dicen’ algo de algo, pero los predicados no son nombres haciendo referencia.
La preocupación filosófica por la modalidad y las nociones afines ha existido siempre. En el siglo pasado, sin embargo, esa preocupación ha pasado por un contraste muy marcado, desde un desprestigio casi completo a un interés obsesivo. Esto se explica en buena medida por la transformación que impulsaron las ideas de Kripke y otros filósofos en la década del 70, tal como se ha indicado arriba. Los positivistas lógicos estuvieron inclinados a pensar que la necesidad de ciertas proposiciones estaba fundada simplemente en el significado que se ha convenido en otorgar a expresiones de un lenguaje. Los términos pueden tener asignado cualquier significado que queramos darle. Esto es un hecho puramente convencional. Dadas esas convenciones, habrá expresiones que, por su modo de estructuración, son verdaderas sin importar cómo sea el mundo. Otras serán falsas sin importar cómo sea el mundo –y sus negaciones, entonces, serán verdaderas sin importar cómo sea el mundo. Otras, en fin, no tendrán valores de verdad determinados por tales convenciones y la estructura semántica. Estas proposiciones serán algunas veces verdaderas, otras veces falsas de acuerdo con cómo sean los hechos. Un ejemplo muy característico de este enfoque es el de Carnap (1956). El ámbito de lo ‘necesario’ y, correlativamente, el ámbito de lo ‘imposible’ está fundado en los significados. La dilucidación de cuál sea el significado es algo que puede hacerse perfectamente a priori. Los positivistas rechazan la existencia de verdades ‘sintéticas a priori’ –tal como lo había propuesto Kant– pero no se han movido un ápice de la asimilación de la necesidad con lo que puede justificarse a priori. De acuerdo con la definición de Carnap:
Una oración '''G'''<sub>i</sub> es '''''L''-verdadera''' en un sistema semántico ''S'' si y sólo si '''G'''<sub>i</sub> es verdadera en ''S'' de tal modo que su verdad puede ser establecida sobre la base solamente de las reglas semánticas del sistema ''S'', sin referencia alguna a hechos (extra-lingüísticos). (Carnap 1956, 10).
Por definición, una oración ''L''-verdadera se da en toda ‘descripción de estado’. Una ‘descripción de estado’ es una clase de oraciones que contiene, para toda oración atómica, o bien tal oración o su negación, pero no ambas. Una oración ''L''-determinada es una oración que es, o bien ''L''-verdadera o bien ''L''-falsa. Una oración ‘fáctica’ es una oración que no es ''L''-determinada. Se puede ver, entonces, que la necesidad se identifica con la verdad y la imposibilidad con la falsedad fundadas ambas en las ‘reglas semánticas’. La contingencia, en cambio, se identifica con los casos en los que no existe verdad o falsedad fundadas en ‘reglas semánticas’.
Por esto, las conexiones necesarias son todas ellas artefactos lingüísticos, cuyo fundamento es –finalmente– las convenciones por las que se ha asociado algún significado a expresiones de un lenguaje. Desde esta perspectiva no tiene sentido suponer que un objeto posee ciertas propiedades ‘necesariamente’. No tiene sentido suponer que hay algo así como una ‘esencia’ para un objeto, que sea la colección de todas las propiedades que ese objeto posee ‘necesariamente’. A un objeto se puede hacer referencia de muchas maneras. Sea una de esas formas de singularizar a un objeto la expresión ''D''. Será necesario para ''D'' ser ''F'', por ejemplo, pero esto tiene que ver no con cierta naturaleza íntima de aquello que ''D'' designa, sino que es algo que se sigue de la forma de designación. Quine hace notar que pensar cualquier otra cosa sería una ‘recaída’ en el esencialismo aristotélico (1953, 155):
Esto [el esencialismo] implica adoptar una actitud discriminatoria hacia ciertas formas de especificar únicamente a ''x'', por ejemplo (33) [que 9 = el número de los planetas], y favoreciendo otras formas, por ejemplo (32) [que 9 = 3Ö93√9], como revelando mejor de algún modo la “esencia” del objeto. Las consecuencias de (32) pueden ser vistas, desde esta perspectiva, como necesariamente verdaderas del objeto que es 9 (y que es el número de los planetas), mientras que algunas consecuencias de (32) son consideradas como todavía sólo contingentemente verdaderas de ese objeto. (Quine, 1953, 155).
El mismo objeto –en este caso, el número 9– puede ser singularizado como el número ''x'' que es el producto de la raíz cuadrada de ''x'' por 3, pero también como el número de los planetas[[#3|<sup>3</sup>]]. Parece razonable sostener que es necesario que 9 > 7. Sucede que 9 = 3Ö93√9, pero también que 9 es el número de los planetas. Entonces, si se sustituye el término “9” por otro que tenga la misma referencia, deberíamos aceptar como una consecuencia lógica de que es necesario que 9 es mayor que 7, que es necesario también que el número de los planetas sea mayor que 7. Pero parece obvio que no hay ninguna necesidad en que los planetas hayan sido más que siete. Nada parece obstar a que hubiesen llegado a ser menos.
Este tipo de objeciones a la existencia de hechos modales metafísicos –esto es, que están fundados en nuestros mecanismos semánticos– fueron dejadas a un lado en gran medida por las ideas de Kripke acerca de los nombres propios como ‘designadores rígidos’ y la llamada “teoría de la referencia directa”, tal como se ha explicado arriba. Hay una diferencia no-arbitraria entre diferentes formas de singularizar a un objeto, porque algunas de estas formas designan al ‘mismo’ objeto en todos los mundos posibles y otras no. Con todo, aún admitiendo que hay hechos modales objetivos cuya existencia no está constreñida por la forma en que accedemos a tales hechos, debe darse una explicación acerca de cuál es su naturaleza. En algún sentido, la cuestión acerca de la naturaleza de los hechos modales se torna mucho más urgente que antes, dado que no basta hacer apelación a factores epistemológicos y semánticos para adjudicar si algo es posible o necesario. Las décadas que han seguido a la transformación kripkeana han visto una proliferación de teorías para ofrecer esta explicación.
La relevancia de la contribución de Fine consiste en haber mostrado la insuficiencia de esta perspectiva. Corregir estas deficiencias requiere introducir nociones primitivas que no admiten ser analizadas por recursos modales. De acuerdo a la concepción modal de la esencia, resulta ‘esencial’ para un objeto ''a'' ser un elemento del conjunto singleton {''a''}, pues en todos los mundos posibles en que existe ''a'' existe también el conjunto {''a''}. Pero no parece esencial para ''a'' ser elemento de algún conjunto. La ‘identidad’ de un objeto no tiene que ver con ser o no elemento de tal o cual conjunto. Al revés, sí parece algo constitutivo de la identidad de un conjunto cuáles sean sus elementos. Además, es un hecho necesario que, por ejemplo, 2 + 3 = 5. Así, sería parte de la esencia de cualquier objeto el poseer la propiedad de ''ser tal que'' 2 + 3 = 5, pero no parece constitutivo de la identidad de un objeto cualquiera la totalidad de los hechos aritméticos. Si se quiere preservar la intuición de que hay propiedades que determinan ‘lo que algo es’ o ‘la identidad’ de un objeto, entonces se requiere hacer una distinción entre las propiedades que posee un objeto en todos los mundos posibles en que existe. Sólo algunas de esas propiedades son relevantes, pero las covariaciones modales no son capaces de efectuar esa discriminación. Fine propone, entonces –siguiendo una venerable tradición filosófica que se remonta a Aristóteles– tomar las esencias como primitivos, sin pretender analizarlas de algún modo. Las entidades poseen esencias y eso es un hecho básico. Los hechos modales, esto es, la distribución de hechos en los diferentes mundos posibles, están fundados en las esencias de las cosas y no al revés. Fine descansa en este concepto primitivo de ‘esencia’ para analizar la relación de dependencia ontológica. Una entidad ''A'' depende ontológicamente de ''B'' porque ''B'' es un constituyente de la esencia de ''A'' (cf. Fine 1995). Así como qué sea esencial no puede ser analizado en términos modales, tampoco puede ser analizado en términos modales qué sea dependiente ontológicamente de qué.
El enfoque de Fine para entender las nociones de ‘esencia’ y de ‘dependencia ontológica’ se ha utilizado luego para entender la relación de ‘fundación’ (''grounding''). El ‘fundamento’ de un hecho ''A'' es la pluralidad de hechos ''B''<sub>1</sub>, ''B''<sub>2</sub>, …, ''B''<sub>n</sub> que son ‘constitutivamente suficientes’ para garantizar la existencia de ''A''. No se pretende analizar esta relación de prioridad ontológica en términos de otros conceptos más básicos o mejor comprendidos. Al revés, se asume la comprensión previa de esta relación de ‘fundación’ para entender otras nociones y otras tesis filosóficas. La existencia de una relación de fundación entre el hecho ''A'' (lo fundado) y los hechos ''B''<sub>1</sub>, ''B''<sub>2</sub>, …, ''B''<sub>n</sub> implica que es necesario que, si son efectivos ''B''<sub>1</sub>, ''B''<sub>2</sub>, …, ''B''<sub>n</sub>, entonces ''A'' es efectivo. Las conexiones de fundación determinan covariaciones modales, pero no pueden ser analizadas como tales covariaciones. Por ejemplo, es necesario que si es efectivo el hecho de que Micifuz es un gato, entonces es efectivo el hecho de que 2 + 3 = 5 –pues, en efecto, es un hecho necesario que 2 + 3 = 5, por lo que la implicación estricta que tenga como consecuente que 2 + 3 = 5 será verdadera, sin importar cuál sea el antecedente. Sería absurdo pensar, sin embargo, que la naturaleza del gato Micifuz sea ontológicamente determinante de hechos aritméticos. La relación de fundación impone una estructura ontológica al ordenar los hechos por conexiones irreflexivas, asimétricas y transitivas. Se trata de una relación no-causal de determinación ontológica explicativa. Rápidamente se ha visto que la ‘fundación’ es el tipo de conexión que se ha buscado en muchas discusiones filosóficas. Por ejemplo, por mucho tiempo se ha querido describir la conexión entre los hechos mentales y los hechos físicos como de ‘superveniencia’. Se advirtió luego que la ‘superveniencia’ no es, de por sí, asimétrica y describe simplemente covariaciones modales[[#6|<sup>6</sup>]]. Lo que se ha querido sostener en estas discusiones es que los hechos mentales están fundados en los hechos físicos.
Durante los últimos diez años la relación de ‘fundación’ ha sido objeto de una atención notoria (cf. por ejemplo, los volúmenes Correia y Schnieder 2012a; Jago 2016; Bliss y Priest 2018). Hay una multitud de cuestiones que son objeto de una viva discusión. Muchos han tratado la relación de fundación como una relación entre ‘hechos’ (cf., por ejemplo, Rosen 2010). Otros la han tratado como conectivos oracionales (cf. Fine 2012), esto es, como un conectivo que permite construir oraciones complejas a partir de oraciones más simples. En la notación de Fine, la expresión “''A'' < ''B''” se debe leer como diciendo que “''B'' porque ''A''”. Las teorías de la ‘fundación’ son regimentaciones de las expresiones en las que utilizamos “porque” para expresar explicaciones ontológicas no causales. La relación de ''truthmaking'' sería un tipo de fundación entre la verdad de una proposición y los hechos que la determinan (cf. Correia y Schnieder 2012b, 25-28; Fine 2012, 43-46).
En estos desarrollos, entonces, hay dos relaciones diferentes de prioridad ontológica. Por un lado, la dependencia o dependencia esencial y, por otro, la fundación. La base de dependencia de un ente es algo ‘constitutivamente necesario’ para ese ente. El fundamento de algo es ‘constitutivamente suficiente’ para su existencia. Nada obsta, entonces, para que se den situaciones en las que estas relaciones interactúen entre sí (cf. Fine 2015). Un ente puede ser dependiente de una base ontológica que no es su fundamento. Un ente puede estar fundado en una base de la que no depende. Un ente puede estar fundado y ser dependiente al mismo tiempo de una base. Un caso mucho más controversial es la situación en la que dos o más entidades poseen relaciones cruzadas en sentidos opuestos de fundación y dependencia. Supóngase que ''B'' está fundado en ''A'', pero que ''A'' depende ontológicamente de ''B''. Lo usual ha sido asumir que tanto la fundación como la dependencia son relaciones asimétricas lo que haría ininteligible una hipótesis de este tipo. Aunque no sería un caso de fundación mutua o de dependencia mutua entre dos ítems, sería un caso en el que aquello que garantiza la existencia de un ítem no puede existir sin la existencia previa de aquello que funda. Ha existido, sin embargo, toda una corriente de discusiones que han puesto en cuestión las características básicas de estas relaciones de prioridad ontológica: irreflexividad, asimetría y transitividad (cf. en especial, los trabajos en Bliss y Priest 2018). También ha sido una suposición generalmente aceptada que las cadenas de fundación o de dependencia deben ser finitas y deben terminar en entidades ‘básicas’, ya sea por ser fundamentales o ya sea por ser independientes. La mayor claridad sobre estas relaciones ha permitido formular y examinar otras hipótesis de alcance muy general acerca de la estructura ontológica básica del mundo. Así como en epistemología el fundacionalismo epistemológico ha sido tradicionalmente contrastado con concepciones coherentistas e infinitistas acerca de la justificación, se ha estado explorando la inteligibilidad de diferentes formas de ‘coherentismo ontológico’ con relaciones de fundación y dependencia no asimétricas. También se ha explorado la inteligibilidad de formas de ‘infinitismo ontológico’ si es que se abandona el requerimiento de que las cadenas de fundación o dependencia deban tener una cota inferior.
Es temprano todavía para hacer una evaluación global de todos estos desarrollos. La discusión sobre la ‘fundación’ y la ‘dependencia’ ha concentrado la atención reciente porque se ha advertido que las alegaciones sobre qué funda qué o qué depende de qué son cruciales para la adjudicación de cualquier debate metafísico. El modo en que deba hacerse esa adjudicación es muy diferente si es que es admisible alguna forma de estructura coherentista. La mayor claridad sobre las estructuras de fundación y dependencia promete generar una transformación tan profunda como lo fue la de los años 70 del siglo pasado cuando se dejó atrás la prevalencia que se le asignaba a las consideraciones semánticas para hacer metafísica. <span id="......">