Abrir menú principal

DIA β

Cambios

Problemas ontológicos de la mecánica cuántica

4893 bytes añadidos, 20:14 11 nov 2016
sin resumen de edición
Existen varias interpretaciones que intentan no apelar a variables ocultas o a ''ensembles ''para hacer frente a este problema. El famoso físico alemán Werner Heisenberg (1959), uno de los padres fundadores de la mecánica cuántica, por ejemplo, sostuvo que “la función de probabilidad (…) contiene afirmaciones acerca de posibilidades o, mejor dicho, tendencias (‘''potentia''’ en la filosofía de Aristóteles)” (1959, 53). Según Heisenberg, por lo tanto, una superposición de estados no representa un estado actual del mundo, sino una posibilidad objetiva de un sistema cuántico de actualizar un cierto estado u otro. También apelando y poniendo el acento en la idea de posibilidad, aunque con un grado de desarrollo y sistematicidad mucho mayor y en un espíritu diferente al perseguido por Heisenberg, los seguidores de las'' interpretaciones modales'' de la mecánica cuántica (van Frassen 1972, 1974, 1991; Dieks 1989, 1994, 2010; Lombardi y Castagino 2008) conciben los estados dinámicos del sistema en términos de propiedades posibles, indicando cuáles son las probabilidades correspondientes (para una presentación de las diversas interpretaciones modales, ver Dieks y Vermaas 1998, Lombardi y Dieks 2016).
 
Mientras las interpretaciones modales dotan de realidad al dominio de lo posible, la ''interpretación de muchos-mundos'' expulsa la posibilidad del mundo cuántico. Sus principales defensores (Everett 1957, Deutsch 1999, 2002, Wallace 2012), argumentan que el vector de estado [[File:image007.png]] describe en realidad todo el universo, y todos los posibles estados de una superposición son o serán actuales en algunos de los mundos que pueblan el universo. La idea central es que, de acuerdo a la mecánica cuántica, el universo es una totalidad que constantemente se divide en infinitos mundos que actualizan los posibles estados de un sistema. Por ello no existe, estrictamente, posibilidad en el universo, ya que todo es actual al menos en un mundo. De acuerdo con esta interpretación, nosotros, como observadores pertenecientes a un mundo, sólo podemos acceder empíricamente a los valores que se han actualizado en ese mundo; sin embargo, los otros valores posibles se han actualizado en otros mundos tan reales como el nuestro, pero inaccesibles para nosotros. Por lo tanto, una superposición es un estado que describe el universo como un todo, con sus múltiples mundos en constante ramificación (para mayores detalles, ver Vaidman 2016, Allday 2009, Cap. 25; también puede consultarse la entrada [[Interpretaciones de la Mecánica Cuántica]] de esta misma enciclopedia).
 
 
==¿Límite ontológico o mera ignorancia? Incerteza y contextualidad==
 
Mientras que, como señalamos en el apartado anterior, Paul Dirac afirmaba que el principio de superposición era la característica fundamental de la mecánica cuántica y uno de sus mayores desafíos, otros autores, como John von Neumann y Werner Heisenberg, consideraban que este lugar era ocupado por el ''principio de incerteza'' (también llamado ''principio de incertidumbre'' o ''de indeterminación'', según cómo se interprete la naturaleza de esa incerteza. Discutiremos esto más adelante). Derivado del formalismo por Heisenberg en 1927, el principio de incerteza es no sólo una pieza central sino también un rasgo distintivo del formalismo de la mecánica cuántica. En términos generales, el principio afirma que ''existen pares de observables (es decir, propiedades de un sistema físico) a los cuales no es posible asignarles valores definidos de manera simultánea''. Es decir, existiría en mecánica cuántica una limitación (¿ontológica?, ¿gnoseológica?) a la hora de determinar con precisión los valores de ciertas propiedades de un sistema físico al mismo tiempo. Naturalmente, este resultado trae consigo ciertas consecuencias a nivel ontológico que deben ser exploradas.
 
Para advertir en qué medida la mecánica cuántica y la física clásica divergen respecto del principio de incerteza, recurramos a nuestras intuiciones y convicciones ontológicas clásicas. Cuando pensamos en cualquier sistema físico clásico, no sólo consideramos que posee un número determinado de propiedades que lo describen, sino que, además, tenemos la convicción de que es posible determinar todas sus propiedades de manera simultánea para ofrecer una descripción completa del sistema. Es decir, todo objeto físico clásico está sujeto a lo que en metafísica comúnmente se conoce como ''principio de determinación omnímoda'' (''omnimoda determatio''), expuesto por Emmanuel Kant en la ''Crítica de la Razón Pura'' (2007 [1781/1787]): “toda cosa, por lo que respecta a su posibilidad, está además bajo el principio de determinación omnímoda, según el cual a ella le debe convenir uno de todos los posibles predicados de las cosas en la medida en que son comparados con sus contrarios” (A571, B600). El principio es intuitivamente claro y la física clásica parece respetarlo sin reservas. El libro que está sobre mi mesa instancia determinadas propiedades, como “ser pesado”, “ser de color negro”, “estar sobre mi mesa”, “tener cierto número de páginas”, etc. Una descripción detallada de todas sus propiedades nos daría una determinación completa del objeto, un conocimiento acabado de él. Naturalmente, yo podría cambiar su posición, arrancarle un cierto número de hojas o pintarlo de otro color; sin embargo, siempre tendrá una posición definida, un color determinado, un cierto número de hojas, etc., de manera simultánea. Obviamente, ciertos predicados no se pueden aplicar al objeto-libro, como “estar angustiado” o “estar sobre la mesa y estar sobre la biblioteca”: en el primer caso, adjudicarle ciertas propiedades al objeto puede constituir un error categorial, y en el segundo caso se viola el principio de no contradicción. De todas maneras, estas posibilidades quedan eliminadas por el propio principio de determinación omnímoda y no constituyen ningún problema para concebir las determinaciones de un objeto físico clásico.
Autores, Editores, Burócratas, Administradores
2246
ediciones