Abrir menú principal

DIA β

Problemas ontológicos de la mecánica cuántica

Revisión de 17:46 11 nov 2016 por Admin (Discusión | contribuciones)

Al abordar los problemas ontológicos de la Mecánica Cuántica (MC), resulta conveniente comenzar con algunas consideraciones preliminares. En primer lugar, el concepto de problema es relativo: algunos tópicos o situaciones podrían ser considerados problemáticos desde un punto de vista, pero podrían pasar inadvertidos desde otro. Cuando hablemos de problemas ontológicos de la mecánica cuántica nos referiremos a aquellos resultados o situaciones donde los objetos cuánticos no se comportan como esperaríamos que lo hiciesen de acuerdo con nuestra manera usual (clásica) de pensar y considerar los fenómenos físicos; o, dicho de otra manera, donde nuestras convicciones cotidianas e intuiciones ontológicas son puestas en jaque y resultan incapaces de dar cuenta del fenómeno considerado de una manera coherente y unificada. Probablemente, si fuésemos seres vivientes y pensantes del tamaño de la escala de Planck, no encontraríamos esta clase de problemas (aunque quizás encontraríamos otros): pensaríamos que los sistemas físicos simplemente se comportan como se supone que deben comportarse de acuerdo con las leyes que rigen en su ámbito; más aún, quizás nos consternaría que los objetos de gran escala se comportaran de una manera extraña, evadiendo el principio de superposición o el principio de incerteza. Por lo tanto, lo que aquí consideraremos como problemas ontológicos encontrarán su contrapunto en ejemplos clásicos: este comportamiento cuántico es problemático porque, usualmente, a nuestra escala, las cosas se comportan de manera muy distinta.

En segundo lugar, nos ceñiremos a problemas de naturaleza exclusivamente ontológica. La mecánica cuántica nos provee de un repertorio muy variado de situaciones que pueden resultar conflictivas desde un punto de vista formal, físico, epistémico o incluso teológico. En este trabajo no intentaremos cubrir todos estos matices. Al referirnos a problemas ontológicos nos referimos a problemas ligados a qué entidades, propiedades y relaciones hay en el mundo de acuerdo con la mecánica cuántica. O, en otras palabras, qué descripción del mundo nos ofrece la mecánica cuántica. En filosofía general de las ciencias existe un famoso y extendido debate acerca de cómo interpretar las entidades teóricas (y las leyes) que una teoría científica postula. Tales entidades, ¿son objetos reales que están en el mundo –aunque sean inobservables? ¿O son meros instrumentos conceptuales o formales que no tienen referencia alguna? Esta entrada asumirá, desde el principio, un enfoque realista de las entidades que la mecánica cuántica postula, y esto por obvias razones: técnicamente, no hay ningún genuino problema ontológico en la mecánica cuántica si, a priori, se considera que las entidades acerca de las cuales la teoría habla no existen. Muchos de estos problemas, claramente, se disolverían automáticamente si la mecánica cuántica fuese un mero aparato formal capaz de ofrecer precisas y exitosas predicciones, pero sin referir a nada en el mundo, sin la capacidad de informarnos acerca de cómo es el mundo si la teoría fuese verdadera.

Por lo tanto, esta entrada buscará marcar y exponer algunos de los puntos donde nuestras intuiciones clásicas -respecto de cómo se comportan los objetos físicos del mundo, qué es un estado físico, cómo son las propiedades de un sistema y cómo se pueden determinar, qué tipo de relaciones existen en el mundo entre objetos físicos etc.- entran en conflicto con la manera en la que sistemas cuánticos, tales como fotones y electrones, se describen y se comportan de acuerdo con la mecánica cuántica.


Nociones formales y principios básicos  

Esta primera sección se propone ofrecer algunas herramientas formales básicas que faciliten al lector comprender algunos de los problemas que serán abordados a lo largo de la entrada. Para ello, se definirán formalmente, y a manera de resumen, nociones tales como las de estado cuántico, observable y otros conceptos sobre los cuales volveremos una y otra vez al tratar los diversos problemas ontológicos en las secciones subsiguientes. Para una exposición mucho más detallada y completa del aparato formal, puede consultarse cualquier manual de mecánica cuántica (Ballentine 1998, Shankar 1994) o, si se prefiere bibliografía de carácter más introductorio y explicativo que, sin dejar de lado aspectos formales, permite una discusión más orientada a los fundamentos conceptuales de la teoría, pueden consultarse los siguientes libros: The Structure and Interpretation of Quantum Mechanics (Hughes 1989), Quantum Reality (Allday 2009) y Quantum Mechanics: the Theoretical Minimum (Susskind y Friedman 2014).

El nacimiento y desarrollo de la mecánica cuántica no fue producto de una empresa o trabajo personal. A diferencia de los Principia Mathematica de Newton (1687), por ejemplo, no existe nada así como un corpus teórico fundacional que establezca los rasgos fundamentales de la teoría. Por el contrario, la “Antigua Teoría Cuántica” (“Old Quantum Mechanics”, como se denomina a la teoría forjada durante su periodo fundacional) fue el resultado del esfuerzo de numerosos científicos durante el primer cuarto del siglo XX, en la búsqueda de una comprensión sistemática y precisa de nuevos resultados teóricos y experimentales que contradecían toda la física existente hasta esos días (la mecánica newtoniana, la mecánica estadística clásica, el electromagnetismo maxwelliano y la termodinámica). Talentosos científicos y filósofos como Niels Bohr, Albert Einstein, Max Planck, Wolfgang Pauli, Werner Heisenberg y Erwin Schrödinger, entre otros, hicieron sus significativos aportes para, ladrillo a ladrillo, ir construyendo el formalismo de la teoría cuántica, al menos en su primera versión. En esta entrada utilizaremos un enfoque más actualizado, formulado en espacios de Hilbert. Consideramos que esta es la manera más efectiva en vistas a entender algunos conceptos básicos y poder tratar los problemas filosóficos que se irán presentando.

Los estados de un sistema cuántico son representados en un espacio de Hilbert  , que es un espacio vectorial lineal complejo, es decir, es un conjunto de vectores cerrado bajo la suma y la multiplicación por escalares que pertenecen al campo de los números complejos. Para cada instante, el estado del sistema cuántico es representado por un único vector  (ket, en notación de Dirac) en un espacio de Hilbert:   .

Por otra parte, las propiedades de un sistema cuántico, llamadas en física observables, se representan mediante operadores sobre el espacio de Hilbert. Matemáticamente, un observable   se representa mediante un operador   que tiene autovectores   y autovalores  , de manera que si se multiplica un autovector por el operador, el resultado es una constante (el autovalor) por el autovector original, es decir,  .

Desde el punto de vista físico, los autovalores   del operador   son los valores que es posible obtener en una medición de la propiedad  . Para calcular magnitudes de interés físico, se realizan operaciones algebraicas a partir de los mencionados operadores. Así, por ejemplo, el valor medio de la propiedad representada por  , para un sistema en el estado  , se calcula como  . Estos valores medios son resultados que pueden calcularse directamente a partir de los datos obtenidos en los experimentos.

Vale la pena agregar que los operadores que se utilizan en mecánica cuántica tienen todos sus autovalores reales y sus autovectores son ortogonales (cf., i.e., Ballentine 1998). Por lo tanto, los autovectores de un operador que representa un observable cuántico pueden formar una base del espacio de Hilbert (y, de hecho, así sucede cuando el operador es no degenerado, cf. Ballentine 1998). Una base para los estados es un conjunto de vectores a partir de los cuales, por medio de una combinación lineal, es posible expresar cualquier vector de estado. Por ejemplo, si los estados   forman una base del espacio de Hilbert   de dimensión  , entonces cualquier vector de estado   se puede escribir como

 

donde los coeficientes   son números complejos. Puesto que hay infinitas bases del espacio de Hilbert  , el mismo vector   se puede representar en la base  , de manera que

 

donde los coeficientes   también son números complejos, los cuales mantienen una relación con los coeficientes   que depende de cuáles sean los vectores de cada base.

Para ilustrar estos conceptos, presentemos un ejemplo. Consideremos un sistema cuántico que se encuentra en un estado representado por el vector  , y un observable   representado por el operador   con autovectores   y  , que forman una base de un espacio de Hilbert de dos dimensiones. El vector   puede representarse como una combinación lineal de los estados de la base, con coeficientes   y   (Figura 1.1):

 
Figura 1.1

De acuerdo con la regla de Born, los coeficientes elevados al cuadrado,   y  , miden las probabilidades de que el observable adquiera los valores   y  , respectivamente, cuando el sistema se encuentra en el estado representado por el vector   (obsérvese que, de acuerdo con el teorema de Pitágoras,  , tal como debe suceder con la suma de las probabilidades de todos los casos posibles).

La evolución del estado a lo largo del tiempo se rige por la ecuación de Schrödinger, que constituye el postulado dinámico de la teoría. De esta manera, un estado inicial   se convierte en  :

 

donde   es el operador hamiltoniano del sistema, esto es, el operador que corresponde al observable energía.

La representación en términos de vectores de estado es apropiada en muchos casos, pero no es la más general. Con el vector de estado   es posible construir el operador de estado   (representado usualmente mediante una matriz densidad) del siguiente modo:

 

La representación matemática del operador de estado se realiza en el espacio de Liouville  , que es el producto tensorial del espacio de Hilbert por sí mismo:  , siendo   un espacio “más grande” que el espacio de Hilbert. Por lo tanto, el espacio de Liouville permite la representación de estados que no existen en el espacio de Hilbert y, por ello, brinda una representación más general que la representación tradicional en un espacio de Hilbert. La evolución del operador de estado viene dada por la ecuación de Schrödinger en versión de von Neumann:

 

donde, nuevamente,   es el hamiltoniano del sistema, y el conmutador   se calcula como  .

El formalismo de la mecánica cuántica también permite describir y dar cuenta de la evolución de sistemas compuestos, es decir, sistemas donde interviene más de una partícula. En el caso de sistemas compuestos, el estado inicial del sistema total se construye como el producto tensorial de los estados de sus subsistemas del siguiente modo (Landau y Lifshitz 1972):

  • Se consideran dos partículas inicialmente separadas e independientes: la partícula 1 en el estado   y la partícula 2 en el estado  .
  • Se asume que, a partir del instante   las dos partículas serán consideradas partes de un sistema compuesto total cuyo estado inicial es  .
  • El estado total   evoluciona, como todo sistema cuántico, según la ecuación de Schrödinger.