===Breve historia del caos===
Se podría afirmar que Aristóteles ya tenía conocimiento de algo similar a lo que hoy se conoce como dependencia sensible. En sus escritos sobre metodología y epistemología, observó que “la mínima desviación de la verdad se multiplica luego por miles” (Aristóteles 1985, 271b8). Que pequeñas perturbaciones puedan crecer exponencialmente para producir efectos substanciales en el comportamiento de un sistema físico llegó a ser un fenómeno de intensa investigación, comenzando con el famoso artículo de Edward Lorenz (1963). En este artículo, Lorenz nota que un particular modelo meteorológico podía exhibir una exquisita sensibilidad a los pequeños cambios en sus condiciones iniciales. Irónicamente, el marco para formular las preguntas sobre la dependencia sensible ya había sido articulado en 1922 por el matemático francés Jacques Hadamard, quien sostuvo que cualquier solución que exhibiera dependencia sensible era una señal de que el modelo matemático describía incorrectamente su sistema de destino. [https://winter.hillsboroughantiquesartdesign.com slot gacor]
Sin embargo, algunos científicos y matemáticos anteriores a Lorenz ya habían examinado este fenómeno aunque estas fueron básicamente investigaciones aisladas que nunca constituyeron un campo de investigación reconocible o sostenido, como sucedió luego de la publicación del artículo seminal de Lorenz. La dependencia sensible a las condiciones iniciales (DSCI) de algunos sistemas ya había sido reconocida por James Clerk Maxwell (1876, 13), quien describió dicho fenómeno como un caso donde “el axioma físico” (de antecedentes similares se siguen consecuencias similares) es violado. Por su parte, Maxwell pensó que este tipo de comportamiento se hallaría únicamente en sistemas con un número suficientemente grande de variables (que poseen, en este sentido numérico, un nivel suficiente de complejidad). Henri Poincaré (1913), por otra parte, reconoció más adelante, que este mismo comportamiento podía observarse en sistemas con un número pequeño de variables (sistemas simples que exhiben un comportamiento asaz complejo). Pierre Duhem, basado en trabajos realizados por Hadamard y Poincaré, describió con mayor claridad las consecuencias prácticas de la DSCI para los científicos interesados en deducir consecuencias matemáticamente precisas de los modelos matemáticos (Duhem 1982, 138–142).
Esta definición es tanto cualitativa como restrictiva. Es cualitativa en tanto que no existe un criterio matemático preciso para la naturaleza inestable y aperiódica del comportamiento en cuestión, aunque de hecho hay algunas formas para caracterizar estos aspectos (las nociones de sistema dinámico y no-linealidad tienen un sentido matemático preciso). Claramente uno puede anexar definiciones matemáticas precisas de inestabilidad y aperiodicidad, pero esta precisión podría no conducirnos a mejoras sustanciales en la definición. (Ver más adelante).
La definición es restrictiva en tanto que limita al caos a ser una propiedad de los modelos matemáticos, de modo que su importancia para los sistemas físicos reales se atenúa. Llegados a este punto debiéramos invocar la suposición del modelo fiel –a saber, que los modelos matemáticos y sus espacios de estados tienen una correspondencia cercana a los sistemas de estudio y sus posibles comportamientos– para forjar un eslabón entre esta definición y el caos en los sistemas reales. Aquí, dos preguntas relacionadas saltan inmediatamente:[https://winter.hillsboroughantiquesartdesign.com | slot gacor]
# ¿Cuán fieles son nuestros modelos? ¿Cuán fuerte es su correspondencia con el sistema de estudio? Preguntas que nos sitúan en los problemas del realismo y la explicación (§5) así como de la confirmación (§3).