Concepciones semánticas de la información

20 841 bytes añadidos, 15:28 13 may 2016
sin resumen de edición
<center>'''Figura 4: Un ejemplo de niveles de abstracción'''</center>
 
El método de NA es un modo eficiente de hacer explícitos y de manejar los compromisos teóricos de una teoría. En nuestro caso, “es la batería lo que provee electricidad al auto” es un ejemplo típico de información elaborada en el NA del conductor. El NA de un ingeniero puede generar algo como “la batería de ácido y plomo de 12 voltios está compuesta de seis células, cada una de las cuales produce aproximadamente 2,1 voltios”, en tanto que el NA de un economista podría sugerir que “una batería de auto de buena calidad costará entre $50 y $100 y, si se la mantiene correctamente, debería durar cinco años o más”.
 
Los datos en tanto posibilitadores limitantes (respuestas a la espera de las preguntas relevantes) se transforman en información factual al ser procesadas semánticamente en un NA dado (o, alternativamente, la pregunta relevante está asociada a la respuesta correcta en un NA dado). Una vez que los datos en tanto posibilitadores limitantes han sido elaborados como información factual en un NA determinado, la cuestión que sigue es si acaso los valores de verdad supervienen en la información factual.
 
 
====Información y verdad====
 
Un contenido factual, ¿sólo califica como información si es verdadero? Los defensores de la neutralidad aléthica de la información semántica (Fetzer 2004 y Dodig-Crnkovic 2005, quienes critican a Floridi 2004b; Colburn 2000, Fox 1983, entre teóricos de la situación Devlin 1991, y Scarantino y Piccinini 2010) argumentan que los datos significativos y bien formados ya califican como información, sin importar si representan o transmiten una verdad o una falsedad o si no tienen valor aléthico en absoluto. Los opositores, por otra parte, objetan que “[…] la información falsa y la información errónea no son clases de información –no más que los patos ornamentales y los patos de goma son clases de patos” (Dretske 1981, 45) y que “la información falsa no es una clase inferior de información; simplemente no es información” (Grice 1989, 371; otros filósofos que han aceptado una definición de información semántica basada en la verdad son Barwise y Seligman 1997 y Graham 1999). El resultado es una definición de información factual semántica como datos significativos y verídicos (defendida en Floridi 2004b; 2005), donde “verídicos” es sólo una elección estilística preferible sobre “verdadero”, porque permite decir que un mapa transmite información factual en la medida en que es verídico.
 
Una vez más, el debate no es acerca de una mera definición, sino que concierne a las posibles consecuencias de la tesis de la neutralidad aléthica, tres de las cuales pueden ser resumidas aquí, mientras que la cuarta requiere un análisis más extenso y será discutida en la sección 4.1.
 
Si la tesis de que “los datos significativos y bien formados ya califican como información” es correcta, entonces
 
<!--[if !supportLists]-->i.        <!--[endif]-->la información falsa (incluyendo las contradicciones) contarían como un tipo genuino de información semántica, no como pseudo-información,
 
<!--[if !supportLists]-->ii.       <!--[endif]-->todas las verdades necesarias (incluyendo las tautologías) calificarían como información (para este problema, ver Bremer 2003); y
 
<!--[if !supportLists]-->iii.     <!--[endif]-->“es cierto que ''p''” –donde ''p'' es una variable que puede ser reemplazada por cualquier instancia de información semántica genuina– no sería una expresión redundante; por ejemplo, “es cierto” en la conjunción “la tierra es redonda” califica como información y no podría ser eliminado sin pérdida semántica.
 
Todos estos nuevos problemas se injertan en algunas ramas viejas del árbol filosófico. Si la información falsa es un tipo genuino de información es una cuestión que ha tenido importantes repercusiones en toda filosofía y en la pragmática de la comunicación.
 
La pregunta acerca de la naturaleza informativa (o de la falta de naturaleza informativa) de las verdades necesarias, de las tautologías, de las ecuaciones o de las afirmaciones de identidad es vieja, y atraviesa a Hume, Kant, Frege y Wittgenstein. El último, por ejemplo, señaló algo interesante:
 
“Otra expresión parecida a las que acabamos de considerar es ésta: ‘¡Aquí está, tómelo o déjelo!’ Y esto, nuevamente, se parece a un tipo de afirmación introductoria que a veces hacemos antes de remarcar alternativas, como cuando decimos ‘O bien llueve, o bien no llueve; si llueve, nos quedaremos en mi habitación, si no llueve…’. La primera parte de esta oración no es una porción de información (de la misma manera que “tómelo o déjelo” no es una orden). En lugar de ‘O bien llueve, o bien no llueve’ podríamos haber dicho ‘Considere los dos casos…’. Nuestra expresión subraya estos casos, los presenta a su atención” (''The Blue and Brown Books'', The Brown Book, II, p. 161, ver Wittgenstein 1960).
 
La solución al problema de la hiperintensionalidad (a saber, cómo se puede trazar una distinción semántica entre expresiones que se supone que tienen el mismo significado según una teoría del significado particular, que por lo general es modal o tiene un carácter modal) depende de cómo se puede dar sentido a la relación entre verdad e informatividad en el caso de las expresiones lógicamente equivalentes.
 
Finalmente, la calificación posiblemente redundante de información como verdadera está conectada, también, con la crítica a las teorías deflacionistas de la verdad (TDV), dado que uno podría aceptar como perfectamente correcto un esquema T-deflacionista al mismo tiempo que rechazar la adecuación explicativa de TDV. “Es verdad que” en “es verdad que ''p''” podría ser redundante en vistas al hecho de que no puede haber información factual que no sea cierta, pero TDV podría confundir esta redundancia lingüística o conceptual con algo incondicionalmente prescindible. “Es verdad que” podría ser redundante porque, estrictamente hablando, la información no es un portador de verdad, sino algo que ya encapsula verdad como veracidad. Así, las TDV pueden ser satisfactorias en tanto teorías de las adscripciones de verdad y ser, al mismo tiempo, inadecuadas en tanto teorías de la veracidad.
 
Una vez que la información está disponible, el conocimiento puede construirse en términos de ''información semántica justificable'' o ''explicable''. Un agente de información sabe que la batería está agotada, pero no porque lo adivinó correctamente, sino porque, por ejemplo, percibe que la luz roja del indicador de batería baja resplandece y/o que el motor no enciende. En este sentido, la información provee la base de toda investigación científica ulterior. Notemos, sin embargo, que el hecho de que los datos puedan contar como ''recursos'' para (''i.e''., ''inputs'' que un agente puede usar para construir) la información y, por lo tanto, para el conocimiento, más bien que ''fuentes'', podría conducir a argumentos construccionistas en contra de las teorías miméticas que interpretan la información como alguna clase de pintura del mundo. Este punto requiere cierta elaboración.
 
Ya sean empíricos o conceptuales, los datos hacen posible solo un rango determinado de constructos de información, y no todos los constructos se tornan posibles con la misma facilidad. Una analogía puede ayudarnos aquí. Supongamos que tenemos que construir un refugio. El diseño y la complejidad del refugio pueden variar, pero hay un rango limitado de posibilidades “realistas” que están determinadas por la naturaleza de los recursos y de las constricciones disponibles (tamaño, materiales de construcción, ubicación, propósitos, seguridad, constricciones temporales, etc.). No se puede construir cualquier refugio. Y el tipo de refugio que más frecuentemente se construirá, será el que saque mayor ventaja de los recursos y límites disponibles. Lo mismo se aplica a los datos. Los datos son, al mismo tiempo, los recursos y las constricciones que hacen posible la construcción de la información. La mejor información es aquella mejor sintonizada con los posibilitadores limitantes disponibles. Así, la coherencia y la adecuación informacional no necesariamente implican ni apoyan un realismo ingenuo o directo, ni una teoría correspondentista de la verdad como comúnmente se presenta. En última instancia, la información es el resultado de un proceso de modelado de datos; no tiene que representar, ni fotografiar, ni retratar, ni fotocopiar, ni mapear, ni mostrar, ni descubrir, ni monitorear, ni…, la naturaleza intrínseca del sistema analizado, no más que un iglú describe la naturaleza intrínseca de la nieve o el Partenón indica las propiedades reales de las piedras.
 
Cuando el ''contenido semántico'' es ''falso'', se trata del caso de la información errónea (Fox 1983). Si la fuente de la información errónea está al tanto de la naturaleza de ésta, podemos hablar de ''desinformación'', como cuando uno le dice al mecánico “mi esposo olvidó apagar las luces”. La desinformación y la información errónea son éticamente censurables, pero pueden ser exitosas para lograr su propósito: decirle al mecánico que su esposo dejó las luces encendidas la noche anterior y que él pueda todavía darle el consejo adecuado. De todas formas, puede suceder que la información no logre ser exitosa: imaginemos que le decimos al mecánico que el auto está fuera de servicio.
 
 
==Enfoques filosóficos de la información semántica==
 
¿Cuál es la relación entre la TMC y el tipo de información semántica que hemos llamado factual? La teoría matemática de la comunicación aborda la información como un fenómeno físico. Su pregunta central es si acaso los datos sin interpretar pueden codificarse y transmitirse de una manera eficiente por medio de un alfabeto dado y a través de un canal determinado y, en caso afirmativo, cuántos. La TMC no está interesada en el significado, intencionalidad, relevancia, confiabilidad, utilidad o interpretación de la información, sino solamente en el nivel de detalle y frecuencia en los datos sin interpretar, sean símbolos, señales o mensajes. Los enfoques filosóficos difieren de la TMC en dos aspectos principales.
 
Primero, ellos buscan dar cuenta de la información en tanto contenido ''semántico'', indagando cuestiones como “¿cómo puede algo ser considerado información? Y, ¿por qué?”, “¿cómo puede algo llevar información acerca de alguna otra cosa?”, “¿cómo puede generarse la información semántica y cómo puede fluir?”, “¿cómo se relaciona la información con el error, la verdad y el conocimiento?”, “¿cuándo es útil la información?”. Wittgenstein, por ejemplo, observa que:
 
“Uno está inclinado a decir: ‘O está lloviendo, o no lo está –cómo lo sé, cómo la información llegó a mí, es otra cuestión’. Pero, entonces, pongamos el asunto en estos términos: ¿qué es lo que llamo ‘información de que está lloviendo’? (¿tengo también sólo información de esta información?) Y, ¿qué es lo que da a esta ‘información’ el carácter de ser información acerca de algo? La forma de expresarnos, ¿no nos está engañando? ¿No es una metáfora engañosa decir: ‘mis ojos me dan la información que hay una silla allí’?” (''Philosophical Investigations'', I. § 356, ver en Wittgenstein 2001)
 
Segundo, las teorías filosóficas de la información semántica también buscan conectarla a otros conceptos informacionales relevantes y a formas más complejas de fenómenos epistémicos, mentales y doxásticos. Por ejemplo, Dretske (1981) y Barwise y Seligman (1997), pretenden fundamentar la información, entendida como contenidos factuales semánticos, en términos de la información ambiental. Este tipo de acercamientos es también conocido como la'' naturalización de la información''. Un punto similar puede hacerse a propósito del argumento de las tierras gemelas de Putnam, donde se externalizan la semántica y la teleosemántica.
 
Usualmente, los análisis filosóficos adoptan una orientación proposicional y una perspectiva epistémica, endosando, a menudo implícitamente, la prevalencia o centralidad de la información factual en el mapa de la Figura 1. Sus análisis suelen basarse en casos tales como “París es la capital de Francia” o “la biblioteca Bodleian está en Oxford”. ¿Qué tan relevante es la TMC para investigaciones de esta índole?
 
En el pasado, algunos programas de investigación trataron de elaborar teorías de la información ''alternativas'' a la TMC con el objetivo de incorporar la dimensión semántica. Donald M. Mackay (1969) propuso una teoría cuantitativa de la información cualitativa que tiene conexiones interesantes con la ''lógica de situación'' (ver más adelante). De acuerdo con MacKay, la información está vinculada a un incremento en el conocimiento del lado del receptor: “Supongamos que comenzamos preguntándonos qué queremos decir por información. En términos generales, decimos que hemos ganado información cuando ahora sabemos algo que no sabíamos previamente; es decir, cuando ‘lo que sabemos’ ha cambiado” (Mackay 1969, 10). Por la misma época, Doede Nauta (1972) desarrolló un enfoque semiótico-cibernético. Sin embargo, en nuestros días, pocos filósofos continúan esas líneas de investigación y, por el contrario, la mayoría concuerda en que la TMC provee una rigurosa restricción para cualquier teorización sobre los aspectos semánticos y pragmáticos de la información. El desacuerdo consiste en cuál es el ''alcance'' de esas restricciones.
 
En un extremo del espectro, se supone que cualquier teoría filosófica de la información semántica-factual está ''muy fuertemente'' constreñida, tal vez incluso sobredeterminada, por la TMC, de la misma manera que la ingeniería mecánica lo está por la física newtoniana. Un ejemplo típico es la optimista interpretación de Weaver del trabajo de Shannon.
 
En el otro extremo, se supone que cualquier teoría filosófica de la información semántico-factual está ''sólo débilmente'' constreñida –tal vez incluso completamente subdeterminada– por la TMC, de la misma manera en la que el tenis lo está por la física newtoniana, es decir, en el sentido menos interesante, trascendente y considerable (ver, por ejemplo, Sloman 1978 y Thagard 1990).
 
La aparición de la TMC en la década del ‘50 generó un temprano entusiasmo filosófico que fue enfriándose, gradualmente, con el pasar de las décadas. Históricamente, las teorías filosóficas de la información semántico-factual han pasado de estar “muy fuertemente constreñidas” a “sólo débilmente constreñidas”. Últimamente, encontramos posiciones que aprecian especialmente a la TMC por lo que puede aportar en términos de una robusta y bien desarrollada teoría estadística de correlaciones entre estados de diferentes sistemas (el que envía y el que recibe) según sus probabilidades. Esto puede tener consecuencias importantes en contextos afines a las matemáticas, tales como algunos enfoques de epistemología naturalizada (Harms 1998) o la explicación científica (Badino 2004).
 
Aunque la filosofía de la información semántica se ha ido autonomizando de la TMC, dos conexiones importantes entre la TMC y los enfoques filosóficos más recientes han permanecido estables:
 
<!--[if !supportLists]-->1.      <!--[endif]-->El modelo de comunicación, explicado en la sección 2.1 (ver Figura 2); y
 
<!--[if !supportLists]-->2.      <!--[endif]-->Lo que Barwise llamó “El Principio de Relación Inversa” (PRI).
 
El modelo comunicacional no ha sido puesto en discusión, incluso cuando en nuestros días los teóricos son más propensos a considerar, como casos básicos, sistemas distribuidos y de múltiples agentes que interactúan en paralelo, en lugar de agentes individuales relacionados mediante un canal de comunicación simple y secuencial. En este sentido, la filosofía de la información (Floridi 2011; Allo 2010) es menos cartesiana que “social”.
 
El PRI refiere a la relación inversa que existe entre la probabilidad de ''p'' –el cual puede extenderse a situaciones de un lenguaje dado (como en Bar-Hillel y Carnap), o a eventos, situaciones o mundos posibles (como en Dretske) –y la cantidad de información semántica que ''p'' lleva (recordemos que el cuervo de Poe, en tanto fuente unaria, no provee información porque sus respuestas son totalmente predecibles). El principio afirma que la información va de la mano con la impredictibilidad. A menudo, se considera que Popper (1935) fue el primer filósofo que defendió el PRI de manera explícita; aunque, de cualquier manera, los intentos sistemáticos para desarrollar un cálculo formal se hicieron sólo después de la irrupción de Shannon.
 
Hemos visto que la TMC define información en términos de la distribución espacial de la probabilidad. En sintonía con ello, el ''enfoque probabilista'' de la información semántica define a la información semántica en ''p'' en términos del espacio lógico de probabilidades y la relación inversa entre información y la probabilidad de ''p.'' Este enfoque fue sugerido, inicialmente, por Bar-Hillel y Carnap (1953) (ver también Bar-Hillel 1964) y luego desarrollado por Kemeny (1953), Smokler (1966), Hintikka y Suppes (1970) y Dretske (1981). Si bien los detalles son complejos, la idea original es simple. El contenido semántico (CONT) en ''p'' se mide como el complemento de la probabilidad ''a priori'' de ''p'':
 
[10]     CONT(''p'') = 1 − ''P''(''p'')
 
CONT no satisface los dos requisitos de adición y condicionalización, que son satisfechos por otra medición, la informatividad (INF) de ''p'', que se calcula, según las ecuaciones [9] y [10], como el recíproco de P(''p''), expresado en bits, donde P(''p'') = 1 – CONT(''p''):
 
&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;1
 
[11]     INF(''p'') = log &mdash;&mdash;&mdash;&mdash;&mdash;&mdash;&mdash; − log ''P''(''p'')
 
&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&emsp;&ensp;1 − CONT(''p'')
 
Las cosas son complicadas por el hecho de que el concepto de probabilidad utilizado en las ecuaciones [10] y [11] está sujeto a diferentes interpretaciones. En Bar-Hillel y Carnap (1953), la distribución de probabilidad es el resultado de una construcción lógica de oraciones atómicas de acuerdo con un lenguaje formal seleccionado. Esto introduce una dependencia problemática en una correspondencia estricta entre el lenguaje observacional y el lenguaje formal. En Dretske, la solución es hacer que los valores de la probabilidad refieran a los estados de cosas observados (''s''), es decir:
 
[12]    ''I''(''s'') = −log ''P''(''s'')
 
Donde ''I''(''s'') es la notación que utiliza Dretske para referirse a la información contenida en ''s.''
 
El ''enfoque modal'' modifica aún más el enfoque probabilista al definir la información semántica en términos de espacio modal e in/consistencia. La información que lleva ''p'', se convierte en el conjunto de todos los mundos posibles, o (más cautelosamente) en el conjunto de todas las descripciones de los estados relevantes posibles del universo, que son excluidos por ''p''.
 
El ''enfoque sistémico,'' desarrollado especialmente en lógica de situación (Barwise y Perry 1983, Israel y Perry 1990, Devlin 1991; Barwise y Seligman 1997 proveen un fundamento para una teoría general del flujo de información), también define a la información en términos de espacio de estados y consistencia. Sin embargo, es ontológicamente menos demandante que el enfoque modal, ya que asume un dominio de aplicación claramente limitado. Este enfoque también es compatible con el enfoque probabilista de Dretske, aunque no requiere una medida de la probabilidad sobre los conjuntos de estados. El contenido informacional de ''p'' no está determinado ''a priori'' mediante un cálculo de estados posibles permitidos por un lenguaje representacional, sino que está determinado en términos del contenido factual que ''p'' lleva con respecto a una situación determinada. La información rastrea las transiciones posibles en el espacio de estados de un sistema bajo condiciones normales. Tanto Dretske como los teóricos de situación requieren alguna presencia de información que ya sea inmanente al ambiente (''información ambiental''), como regularidades nómicas o restricciones. Este “externalismo semántico” puede ser controversial.
Autores, Editores, Burócratas, Administradores
2246
ediciones

Menú de navegación