Para advertir en qué medida la mecánica cuántica y la física clásica divergen respecto del principio de incerteza, recurramos a nuestras intuiciones y convicciones ontológicas clásicas. Cuando pensamos en cualquier sistema físico clásico, no sólo consideramos que posee un número determinado de propiedades que lo describen, sino que, además, tenemos la convicción de que es posible determinar todas sus propiedades de manera simultánea para ofrecer una descripción completa del sistema. Es decir, todo objeto físico clásico está sujeto a lo que en metafísica comúnmente se conoce como ''principio de determinación omnímoda'' (''omnimoda determatio''), expuesto por Emmanuel Kant en la ''Crítica de la Razón Pura'' (2007 [1781/1787]): “toda cosa, por lo que respecta a su posibilidad, está además bajo el principio de determinación omnímoda, según el cual a ella le debe convenir uno de todos los posibles predicados de las cosas en la medida en que son comparados con sus contrarios” (A571, B600). El principio es intuitivamente claro y la física clásica parece respetarlo sin reservas. El libro que está sobre mi mesa instancia determinadas propiedades, como “ser pesado”, “ser de color negro”, “estar sobre mi mesa”, “tener cierto número de páginas”, etc. Una descripción detallada de todas sus propiedades nos daría una determinación completa del objeto, un conocimiento acabado de él. Naturalmente, yo podría cambiar su posición, arrancarle un cierto número de hojas o pintarlo de otro color; sin embargo, siempre tendrá una posición definida, un color determinado, un cierto número de hojas, etc., de manera simultánea. Obviamente, ciertos predicados no se pueden aplicar al objeto-libro, como “estar angustiado” o “estar sobre la mesa y estar sobre la biblioteca”: en el primer caso, adjudicarle ciertas propiedades al objeto puede constituir un error categorial, y en el segundo caso se viola el principio de no contradicción. De todas maneras, estas posibilidades quedan eliminadas por el propio principio de determinación omnímoda y no constituyen ningún problema para concebir las determinaciones de un objeto físico clásico.
El principio de incerteza desafía el alcance mismo del principio de determinación omnímoda: los objetos cuánticos tienen, de hecho, propiedades posibles que, sin embargo, no pueden estar determinadas simultáneamente. El principio afirma que existen observables que son incompatibles entre sí. Técnicamente, se considera que dos observables [[File:2POMQimage011.png]] y [[File:3POMQimage003.png]] son incompatibles cuando el conmutador entre sus operadores asociados es distinto de cero: [[File:3POMQimage005.png]]. Lo que Heisenberg descubrió fue que entre los observables cuánticos que no conmutan, se cumple una ''relación de incerteza''. El ejemplo paradigmático de observables que no conmutan son la posición y el momento lineal; en este caso, la relación de incerteza se expresa:
<center>[[File:3POMQimage007.png]]</center>
donde [[File:3POMQimage009.png]] indica la desviación estándar de la posición y [[File:3POMQimage011.png]] la desviación estándar del momento lineal. Esto significa que, cuanto mayor sea la precisión en la determinación de la posición de un sistema cuántico (cuanto menor sea [[File:3POMQimage009.png]]), menor será la precisión en la determinación del momento (mayor será [[File:3POMQimage011.png]]), y viceversa, de modo tal que el producto entre las imprecisiones se mantenga dentro del rango fijado por [[File:3POMQimage012.png]]. La clave formal a partir de la cual se deriva el principio de incerteza radica en la posibilidad de expandir el estado de un sistema en diferentes bases, esto es, bases correspondientes a observables que no conmutan. Veamos este aspecto con más precisión.
Supongamos un sistema cuántico con su propiedad [[File:3POMQimage014.png]], asociada al observable [[File:2POMQimage011.png]] con autoestados [[File:2POMQimage021.png]], y su propiedad [[File:3POMQimage001.png]], asociada al observable [[File:3POMQimage003.png]] con autoestados [[File:3POMQimage017.png]]. No hay razón alguna para que los autoestados de [[File:2POMQimage011.png]] y de [[File:3POMQimage003.png]] sean los mismos; en general, los autoestados de un operador se pueden expresar como combinación lineal de los autoestados del otro operador:
<center>[[File:3POMQimage019.png]]</center>
donde [[File:3POMQimage020.png]] y [[File:3POMQimage023.png]] para algún [[File:3POMQimage026.png]]. Esto significa que las bases [[File:3POMQimage027.png]] y [[File:3POMQimage032.png]] están “rotadas” una respecto de la otra; es decir, ambas bases del espacio de Hilbert no coinciden. En esta situación, si el sistema tiene la propiedad [[File:3POMQimage014.png]] definida en un valor [[File:3POMQimage033.png]], entonces se encuentra en un estado definido: el autoestado [[File:3POMQimage035.png]] de [[File:2POMQimage011.png]]. Pero, según la sumatoria anterior, dicho estado se puede expresar como una superposición no trivial de los autoestados de [[File:3POMQimage003.png]]. Esto significa que, en un caso genérico, si el sistema tiene definida la propiedad [[File:3POMQimage014.png]], entonces no tiene definida la propiedad [[File:3POMQimage001.png]]. Es en este sentido que se dice que los observables [[File:2POMQimage011.png]] y [[File:3POMQimage003.png]] son incompatibles: el sistema no puede tener ambas propiedades bien definidas a la vez, por razones que se siguen de manera estricta de la estructura formal de la teoría.
Ahora bien, ¿cuáles son los problemas filosóficos que subyacen al principio de incerteza? Uno de los principales problemas radica en cuál es la naturaleza de esa incerteza, fundamentalmente, si ésta es de índole gnoseológica u ontológica: el principio, ¿expresa una limitación intrínseca de la teoría para describir los objetos cuánticos, al no ser capaz de brindar valores definidos de los observables? ¿O, por el contrario, la teoría describe un rasgo objetivo del mundo cuántico? Ya sea esta limitación de índole gnoseológica u ontológica, el principio de incerteza establece, al menos, un límite claro a los conceptos que clásicamente utilizamos para describir nuestro mundo cuando pretendemos utilizarlos en el dominio cuántico.
La interpretación estadística, que presentamos en la sección anterior, consideraría que el principio impone una mera limitación de nuestro conocimiento basado en la mecánica cuántica. A la manera de la mecánica estadística clásica en la versión gibbsiana, el vector de estado no representaría el estado de un único sistema cuántico sino la situación en la que se encuentra la colección o ''ensemble'' de sistemas similares. De esta manera, las probabilidades se convierten en frecuencias relativas dentro del ''ensemble'' y adquieren un significado exclusivamente gnoseológico: es una limitación de la teoría no poder definir con precisión los valores de cada sistema que componen el ''ensemble''; pero, ''in re'', los valores permanecen definidos: cada subsistema tiene todas sus propiedades determinadas de manera simultánea. Por lo tanto, es nuestra ignorancia acerca de tales valores y el recurso a frecuencias relativas lo que nos conduciría al principio de incerteza. Cualquier interpretación que considere que la mecánica cuántica no es una teoría completa y que existen “variables ocultas”, dotará al principio de incerteza de un contenido meramente gnoseológico: el hecho de que no se pueda asignar valores simultáneos de manera precisa a dos observables incompatibles no es un límite de la naturaleza, un límite ''in re''. Un acérrimo defensor de este punto de vista fue Albert Einstein quien apeló a diferentes tipos de experimentos mentales (como el del reloj en la caja o el popular experimento EPR, al cual nos referiremos más adelante) para refutar la idea de que el principio de incerteza expresa un tipo de indeterminación ontológica o que constituye una ley fundamental de la naturaleza.
Sin embargo, apelando nuevamente al teorema de Kochen-Specker y a la contextualidad cuántica, en general se considera que el principio de incerteza sí representa una característica objetiva del mundo. La probabilidad cuántica no puede concebirse como medida de la ignorancia acerca de un micro-estado clásico subyacente en el cual se encontraría el sistema, sino que mide una indeterminación objetiva. No es la mecánica cuántica la que nos ofrece una descripción parcial del micromundo: es el propio micromundo el que posee características totalmente ajenas a las del mundo clásico. Es a la luz de esta idea que surgen genuinos problemas ontológicos: ¿el principio de incerteza contradice el principio de determinación omnímoda? Más aún, ¿qué clase de objeto es aquél cuyas propiedades no pueden determinarse de manera completa y simultánea?
A modo de ilustración, supongamos un objeto que tiene las propiedades de “pesar cierta cantidad de kilos” y “tener una altura”. Este objeto, además, se comporta según las leyes de la mecánica cuántica y, por lo tanto, cae bajo el alcance del principio de incerteza y de la contextualidad. Supongamos que “peso” y “altura” constituyen un par de observables incompatibles. Como primera acción para describir nuestro objeto, preparamos nuestro aparato de medición para determinar cuál es su peso. Luego de pesar el objeto, obtenemos un valor preciso: 13.5kg. Sin embargo, por haber llevado a cabo una medición muy precisa sobre una de sus propiedades, hemos perdido total información acerca de cuál es su altura (como explicamos técnicamente más arriba). Mientras conocemos su peso, desconocemos absolutamente su altura, siempre y cuando pretendamos conocer ambas propiedades a la vez. Esto es, sin lugar a dudas, algo extraño pero una consecuencia incuestionable del formalismo de la mecánica cuántica.
Sin embargo, este no es el final de la historia y los alcances del principio pueden ser llevados un paso más allá. Aceptado el principio de incerteza, sabemos que no podemos medir simultáneamente ambos observables con precisión, sino que, o bien medimos uno u otro con precisión, o bien nos conformamos con obtener un rango de valores de ambos observables, como por ejemplo: “mi objeto pesa entre 10-15kg., y tiene una altura de entre 40-50cm”. Pero, obstinados en nuestras convicciones clásicas, podríamos idear una manera de burlar el principio de incerteza y obtener una descripción completa aunque no simultánea. Para empezar, podríamos pesar el objeto, obteniendo un valor preciso de su peso y luego medir la altura del objeto, y así obtener un valor preciso de su altura. Si bien simultáneamente no es posible precisar ambas propiedades, parece plausible poder hacerlo procediendo en instantes distintos. Finalmente, parece que hemos obtenido la información completa que describe al objeto: “mi objeto pesa 13.5kg y mide 46cm”, burlando el principio de incerteza, aun así sea de manera no simultánea.
No obstante, hemos sido víctimas de nuestra ingenuidad clásica y de no comprender acabadamente el alcance de la contextualidad cuántica. Al considerar que el objeto pesa 13.5kg y mide 46cm, suponemos que el valor del peso se mantiene definido cuando efectuamos la medición de la altura y también obtenemos un valor definido. Pero esto es justamente lo que no permite el teorema de Kochen-Specker, que demuestra que ''cualquier'' asignación de valores precisos a todos los observables de un sistema cuántico conduce a una contradicción. En nuestro ejemplo, si el objeto pesa 13.5kg, asumir que tiene un valor preciso ''x'' de altura resulta contradictorio en el marco de la teoría, independientemente de cuál sea el valor ''x''. Esto significa que, si el principio de incerteza dejaba aún abierta la posibilidad de una lectura gnoseológica de tal incerteza (''x'' tiene un valor definido pero no sabemos cuál), la contextualidad cuántica frustra dicha interpretación: si el objeto tiene un valor definido de peso, no puede tener valor definido de altura, independientemente de si conocemos o no dicho valor, ya que, de suponerlo así, el formalismo cuántico nos conducirá a tener que admitir la verdad de un enunciado del tipo “''p ''y no ''p''”.
¿Cómo concebir estos peculiares objetos que parecen violar el principio de determinación omnímoda? Este es uno de los problemas ontológicos centrales de la mecánica cuántica, que no encuentran solución en ninguna interpretación no contextual, sea por ''ensembles'' o, en general, por variables ocultas. Lamentablemente, Einstein ya no estaba aquí cuando se formuló el teorema de Kochen-Specker: habría sido por demás interesante conocer su postura frente a tan importante resultado teórico.
==¿Hay realidad más allá de medir? El problema de la medición==
En los apartados anteriores encontramos problemas ontológicos vinculados con la existencia de estados superpuestos y de observables incompatibles entre sí. En ambos casos, nos referimos repetidamente al acto de ''medir'' algún observable relevante del sistema: en primer lugar notamos que, a pesar de la existencia de la superposición, de acuerdo al formalismo de la mecánica cuántica siempre medimos valores definidos; luego subrayamos la existencia de un límite para nuestras ''mediciones'', establecido por el principio de incerteza. Estrechamente vinculado a estos problemas, el proceso de medir mismo también involucra una serie de complejidades y problemas que no tienen análogo clásico. Jeffrey Bub (1997) ha afirmado que el llamado “problema de la medición” constituye un problema central y de vital importancia en mecánica cuántica. Aquí pondremos el foco en las consecuencias del problema en el plano ontológico, considerando qué es una medición, y en particular, una medición de un sistema cuántico.
De manera general, el proceso de medir alguna propiedad de un sistema físico con un dispositivo determinado implica algún grado de interacción y correlaciones entre ambos sistemas. Cuando queremos medir la intensidad de una corriente eléctrica, sabemos que la corriente interactúa con el circuito interno del amperímetro, donde observamos directamente los valores medidos: confiamos en que esos valores guardan algún tipo de relación con la propiedad medida del sistema: “el resultado de la medición es el estado del aparato de medición luego de que ha interactuado con el sistema, un estado que podemos ratificar observando directamente el dispositivo” (Lange 2002, 256). Por supuesto, toda medición científica involucra márgenes de error ya que no existen aparatos absolutamente precisos (para un abordaje completo sobre mediciones en ciencia, ver Alder 2002 o Tal 2015). Sin embargo, de manera ideal, puede definirse el acto de medir como un proceso en el cual el resultado de la medición está perfectamente correlacionado con el estado de un sistema con el cual ha interactuado (Lange 2002, van Frassen 2008, Tal 2015).
Para el caso concreto de las mediciones cuánticas, John von Neumann (1932) formuló el siguiente modelo de medición. Consideremos un sistema [[File:3POMQimage049.png]], con una propiedad [[File:3POMQimage014.png]] asociada al observable [[File:2POMQimage011.png]] y un aparato de medición [[File:3POMQimage050.png]] diseñado para medir la propiedad [[File:3POMQimage014.png]]. El proceso de medición consta de tres etapas:
''1. Condición inicial''. En un primer momento, el sistema [[File:3POMQimage049.png]] a medir y el aparato de medición [[File:3POMQimage050.png]] no interactúan: cada uno se encuentra en su estado inicial independiente. Inicialmente [[File:3POMQimage049.png]] se encuentra en una superposición de los autoestados [[File:2POMQimage021.png]] del observable [[File:2POMQimage011.png]]:
<center>[[File:3POMQimage040.png]]</center>
Al inicio, el aparato [[File:3POMQimage050.png]] se encuentra listo para medir, en el estado [[File:3POMQimage041.png]], autoestado del observable [[File:3POMQimage056.png]] que actúa como puntero. Entonces, el estado inicial del conjunto es:
<center>[[File:3POMQimage045.png]]</center>
Donde [[File:3POMQimage047.png]] es el estado del sistema compuesto [[File:3POMQimage048.png]] antes de que se produzca la interacción.
''2. Interacción''. En una segunda etapa, [[File:3POMQimage049.png]] y [[File:3POMQimage050.png]] entran en interacción y se producen las correlaciones. Cada autoestado [[File:3POMQimage052.png]] del observable [[File:2POMQimage011.png]] del sistema [[File:3POMQimage049.png]] se correlaciona con un autoestado [[File:3POMQimage054.png]] del puntero [[File:3POMQimage056.png]] del aparato de medición [[File:3POMQimage050.png]]:
<center>[[File:3POMQimage058.png]]</center>
Esto significa que a cada estado posible [[File:3POMQimage052.png]] del sistema le corresponde una indicación [[File:3POMQimage059.png]] del puntero del aparato. La correlación entre los posibles estados del sistema y las posibles indicaciones del puntero nos permiten decir que se está midiendo el sistema [[File:3POMQimage049.png]], en particular, su propiedad [[File:3POMQimage014.png]].
''3. Lectura''. En la última etapa los sistemas dejan de interactuar y es posible efectuar la lectura del puntero. Como en la práctica el puntero (por ejemplo, una aguja en un dial) no se encuentra en una superposición, se espera que ''de algún modo'' uno de los valores posibles del puntero resulte seleccionado:
<center>[[File:3POMQimage062.png]]</center>
De esta manera podría afirmarse que el puntero indica el valor [[File:3POMQimage063.png]].
Intuitivamente, el proceso de medir nos estaría brindando información acerca de cuál era el estado del sistema previo a ser medido: el aparato de medición meramente nos indica dicho estado determinado. Sin embargo, nada es tan sencillo en mecánica cuántica, y por ello el problema de la medición ha agitado tantas aguas y causado arduas discusiones en la bibliografía científica y filosófica. Pero ¿en qué consiste, precisamente, el problema de la medición?
En el apartado dedicado al problema de la superposición, mencionamos rápidamente las líneas generales del problema: cómo explicar que los aparatos de medición arrojen valores definidos para las propiedades de los sistemas cuánticos cuando tales sistemas se encuentran en una superposición de estados. En referencia al modelo de von Neumann para una medición cuántica, el problema radica en encontrar un proceso físico que permita reproducir lo que se espera hallar en la etapa de lectura. En palabras de Niels Bohr, el núcleo del problema radica en el proceso mismo de medir: “el procedimiento de medición tiene una influencia esencial sobre las condiciones en las cuales la propia definición de propiedad física descansa” (Bohr 1935, 1025). Otra manera de enfocar la situación es en términos de un conflicto entre la dinámica lineal del sistema cuántico antes de ser medido y la aparente necesidad de una evolución no lineal que explique lo obtenido luego de la medición (Krips 2016).
La respuesta canónica (y la más difundida) a este problema consistió en apelar a un postulado externo a la teoría, es decir, que no se sigue del formalismo y los principios de la mecánica cuántica: el “postulado del colapso” o la “reducción de la función de onda”. Originalmente propuesto por Heisenberg en 1927, fue adoptado por la llamada ''interpretación de Copenhague'' (para mayor información acerca de esta interpretación, ver Hooner 1987, Allday 2009, cap.24, Faye 2014) y se convirtió en la explicación ortodoxa del problema en el ámbito de la comunidad científica. Desde esta perspectiva, el estado de un sistema cuántico puede seguir dos tipos de evoluciones: cuando no es medido, evoluciona según la ecuación de Schrödinger, de manera determinista, unitaria, lineal y reversible (Pessoa 2005, 45); pero, cuando se realiza una medición sobre el sistema, el estado “colapsa”, interrumpiendo la evolución unitaria según la ecuación de Schrödinger. Si antes de efectuar la medición el sistema cuántico se encontraba en un estado de superposición respecto de un observable, cuando se lleva a cabo la medición el estado colapsa en alguno de los autoestados de tal observable, ofreciendo los valores clásicos que obtenemos en el aparato de medición a través de una evolución no unitaria e indeterminista. Por ejemplo, si existe una distribución de probabilidades sobre la posición de una partícula, cuando se lleva a cabo la medición la posición se define completamente en un punto determinado del espacio.
A pesar de ser sumamente efectivo, el postulado del colapso no está exento de problemas interpretativos y, si bien muy popular y difundido entre la comunidad de físicos, ha recibido numerosas críticas. En principio, la existencia de dos tipos muy distintos de evoluciones parece, al menos, extraña. David Albert señala al respecto:
“La dinámica [de la teoría] y el postulado del colapso están categóricamente en contradicción (…) el postulado del colapso parece estar en lo cierto acerca de qué sucede cuando medimos, y la dinámica parece estar bizarramente equivocada acerca de qué sucede cuando medimos, y todavía, la dinámica parece estar en lo cierto acerca de qué sucede siempre que no estamos midiendo” (Albert 1992, 79).
Usualmente, la hipótesis del colapso es cuestionada porque se fundamenta en una noción de “medición” que no ha sido analizada cuidadosamente pero que, sin embargo, juega un papel físico fundamental a la hora de establecer las propiedades de una evolución cuántica (Dickson 2007, 363): ¿qué tiene de físicamente especial el proceso de medir? Desde una perspectiva más general, físicamente, ¿qué es una medición? Si la mecánica cuántica es una teoría fundamental, debería decirnos qué es una medición; sin embargo, la hipótesis del colapso, estrechamente relacionada con el proceso de medir, introduce una fuerte dependencia contraria: es la medición la que nos dice qué es la mecánica cuántica. (Dickson 2007). Por otro lado, al asumirse de manera acrítica la idea de medición, no hay claridad acerca de qué distingue una medición de otras interacciones físicas. La hipótesis del colapso puede también considerarse conceptualmente inadecuada por describir un proceso introducido ''ad hoc'' a la hora de explicar el fenómeno de medir, ya que (ver Lombardi, Fortin, Castagnino y Ardenghi 2011):
*No se ofrece una explicación de las causas que producen el colapso, ni se indica el instante en el que éste se produce.
*El postulado por sí solo no explica por qué el sistema colapsa en una determinada base y no en otra.
*Puesto que el colapso se produce en el sistema total, se trata de un fenómeno no-local, en el sentido de que no tiene en cuenta la distancia a la que se encuentran el sistema y el aparato.
Algunas interpretaciones de la mecánica cuántica han intentado mitigar las dificultades de la hipótesis del colapso considerando que el colapso se produce de manera espontánea –rompiendo el vínculo colapso y proceso de medición– cada cierta cantidad de tiempo (Ghirardi, Rimini y Weber 1986. Para una exposición general puede consultarse Ghirardi 2016). Por su parte, Heisenberg consideraba que el estado cuántico era una descripción objetiva de la potencialidad del objeto (es decir, de sus propiedades posibles). El sistema cuántico adquiere propiedades actuales y definidas solamente después de ser medido. Desde este punto de vista, el colapso no es sino el paso de la potencia a la actualidad, el paso a la existencia de las propiedades de un sistema cuántico (Heisenberg 1959). Mientras tanto, de acuerdo con Bohr, el problema de la medición simplemente mostraba que una “realidad independiente en el sentido ordinario no puede adscribirse a los fenómenos ni a la acción de medir” (Bohr 1935, 1025). Según el autor, lo que el problema de la medición pone en evidencia es que el estado de un sistema cuántico no tiene existencia independiente del aparato de medición y sólo adquiere pleno sentido físico cuando es considerado como el estado combinado del sistema a medir y el aparato de medición. Esta incapacidad de escindir ambos sistemas permite a Bohr salvaguardar cierto rasgo de clasicidad: el sistema cuántico siempre tendrá propiedades clásicas y definidas en el contexto de una medición (Allday 2009, 417).
Naturalmente, otras interpretaciones de la mecánica cuántica han buscado hacer frente al problema de la medición prescindiendo de la hipótesis del colapso. Por ejemplo, las interpretaciones modales proponen eliminar tal postulado de la teoría ya que consideran la medición cuántica como una interacción física ordinaria. No hay colapso en la dinámica del estado: éste siempre evoluciona unitariamente de acuerdo a la ecuación de Schrödinger. No obstante, las interpretaciones modales distinguen el plano de lo posible del plano de lo actual a través de la distinción entre “estados dinámicos” y “estados-valor”. El estado dinámico del sistema, representado por un vector de estado, describe lo posible, es decir, brinda las probabilidades para los distintos valores posibles de todos los observables del sistema. El estado dinámico nunca colapsa: las probabilidades evolucionan siempre lineal y unitariamente según la ecuación de Schrödinger. Sin embargo, el sistema cuántico tiene también ciertas propiedades actuales bien definidas, es decir, valores definidos de algunas magnitudes físicas (obviamente, no de todas, dada la restricción que impone el teorema de Kochen y Specker).
El problema de la medición recoge y agudiza algunos de los problemas ontológicos mencionados en las secciones anteriores. A su vez, las respuestas que cada interpretación ofrece al problema dan lugar a nuevas y variadas inquietudes ontológicas. Por ejemplo, en el marco de las interpretaciones modales, las probabilidades que el estado cuántico asigna a los valores posibles de los observables de un sistema suelen ser interpretadas de manera objetiva (Kochen 1985, Dieks 1989, Bene y Dieks 2002, Lombardi y Castagnino 2008), mientras que la interpretación de muchos mundos considera que la probabilidad es meramente gnoseológica, ya que cada valor posible encuentra su actualización en algún mundo, o bien el nuestro, o bien otro separado e inaccesible para nosotros (Everett 1957, Greaves 2006, Vaidman 2016, Wallace 2012). Por lo tanto, qué tipo de respuesta se brinde al problema de la medición y qué interpretación se adopte para ello, nos compromete con una cierta naturaleza de las probabilidades cuánticas, y ello se relaciona de manera estrecha con cuál es la ontología de la mecánica cuántica.
Por otro lado, las dificultades que involucra el proceso de medición cuántica plantean un genuino problema acerca de qué tipo de realidad cuántica existe independientemente del aparato de medición. Haciéndonos eco de las palabras de Bohr y Heisenberg, ¿en qué medida podemos atribuir realidad independiente al sistema medido si, cuando queremos obtener algún tipo de información acerca de sus propiedades, inevitablemente resulta entrelazado con el aparato de medir? ¿Es que sólo tiene sentido atribuir realidad al sistema compuesto de “aparato de medir” más “sistema medido”? Como mencionamos anteriormente, en el marco de la interpretación de Copenhague no puede adjudicarse ningún tipo de realidad independiente al sistema cuántico. En palabras de Heisenberg: “lo que observamos no es la naturaleza misma, sino la naturaleza expuesta a nuestro modo de indagarla” (1956). Desde esta perspectiva, la ''potentia'' que los estados cuánticos poseen entre mediciones posee un grado de realidad disminuido y claramente ambiguo. Por el contrario, las interpretaciones modales han afirmado el carácter real e irreductible de la posibilidad. Por ejemplo, la interpretación modal-Hamiltoniana (Lombardi y Castagnino 2008) afirma que la mecánica cuántica describe el reino de lo posible, reino irreductible a lo actual donde los hechos posibles tienen tanta realidad como los hechos actuales. Por lo tanto, para esta interpretación, entre una medición y otra existe una realidad posible con estatus ontológico propio y la mecánica cuántica describe esa realidad.
==¿Hay ''objetos'' cuánticos? El problema de la individualidad de las partículas ==
Hasta el momento nos hemos referido a problemas ontológicos que involucran a un solo sistema cuántico. Más aún, siempre nos hemos referido a los sistemas cuánticos como si fuesen objetos con una cierta unidad e individualidad; también nos hemos referido a ellos como teniendo tal o cual estado, portando o instanciando ciertas propiedades. En síntesis, nos hemos referido a ellos como si, “por debajo” de las propiedades (observables), hubiese una suerte de objeto físico, en el sentido de una sustancia concreta, singular e individualizable. Sin embargo, la misma noción de “objeto individual” para referirnos a los sistemas cuánticos puede ser puesta en duda a la luz de ciertos fenómenos y resultados de la teoría.
Filosóficamente, la noción de “objeto” es difícil de aprehender de manera acabada: el concepto resulta tan amplio que es difícil brindar una definición precisa que abarque todas las características mediante las cuales identificamos objetos. En términos generales, pueden encontrarse dos tipos de enfoques frente a la pregunta acerca de qué es un objeto: un enfoque semántico y un enfoque metafísico (Lowe 1995). De acuerdo con el primero, un objeto es aquello a lo cual nos referimos mediante términos singulares (Frege 1977 [1892], Dummet 1973) o aquello que puede ser el valor de una variable cuantificada (Quine 1953). En cambio, de acuerdo al enfoque metafísico, un objeto es una entidad que posee determinadas condiciones de identidad (Lowe 1995, Wetzel 2008). Esta discusión suele relacionarse de manera muy estrecha con otra noción, la de individuo: qué es un individuo, qué es aquello que permite ''individualizar'' objetos. La naturaleza de los individuos ha sido sumamente discutida en la bibliografía filosófica, constituyendo una de las principales controversias metafísicas. Tradicionalmente, un objeto individual es algo que puede ser identificado en el espacio y en el tiempo (es decir, que tiene una localización espacial y temporal precisa), posee cierta independencia, es diferente de otro individuo y tiene una unidad intrínseca. Suele decirse que un individuo posee algún tipo de principio de individualidad que lo hace distinto de otros individuos pero lo hace ser el mismo a través del tiempo.
La idea de que un individuo es una sustancia (que opera como principio de individualidad) ''más'' propiedades (que son contingentes y pueden cambiar) es una de las concepciones más difundidas en la metafísica tradicional, asumiendo diferentes formas. La idea puede rastrearse, si bien con un sentido diferente, hasta Aristóteles (''Categorias'', ''Metafísica''), y adquiere su forma más explícita en la doctrina de la sustancia de John Locke (1999 [1690]) o las mónadas en la filosofía de Gottfried Leibniz (1983 [1686]). Desde un punto de vista lógico y lingüístico, un individuo puede ser nombrado o caer bajo descripciones definidas. Los sistemas de lógica usuales también presuponen alguna noción de individuo en la medida en que variables y constantes son sujetos de predicación: el rango de variables constituye el dominio de los individuos a los cuales las propiedades se aplican (para una discusión pormenorizada de la noción metafísica de individuo y sustancia, ver Robinson 2014).
¿Qué puede decirse acerca de la noción de objeto o individuo en mecánica cuántica? ¿Son los sistemas cuánticos (''v.g.'' partículas como electrones, fotones, etc.), más allá de algunas características y comportamientos peculiares, ''objetos'', en algún sentido, como lo son los sistemas clásicos? En este apartado expondremos y analizaremos las respuestas a estas preguntas a partir de dos fenómenos cuánticos muy conocidos: la ''no-separabilidad'' y la ''indistinguibilidad de las partículas cuánticas''. La bibliografía en torno a estos fenómenos es muy amplia y ha dado lugar a grandes discusiones en la comunidad de físicos y filósofos. Aquí nos limitaremos a analizar cómo estos fenómenos ponen en discusión la idea de que los sistemas cuánticos puedan considerarse objetos en sentido estricto. El fenómeno de la no-separabilidad cuestiona tanto la noción de objeto cuántico individual como el principio metafísico de reducción y composicionalidad: cuando dos sistemas cuánticos interactúan y forman un sistema compuesto, no sólo ya no es posible re-identificar las partes componentes, sino que el sistema compuesto se comporta de manera holista y no-local. Por su parte, el carácter indistinguible de las partículas cuánticas conduce a cuestionarnos los criterios de identidad de los sistemas cuánticos, despertando toda una serie de preguntas metafísicas, como por ejemplo: si dos partículas cuánticas son indistinguibles, ¿qué motivos tenemos para sostener que hay dos partículas?
===No-separabilidad===
Comencemos explicando a qué nos referimos cuando afirmamos que dos sistemas físicos son separables. De acuerdo con la mecánica newtoniana clásica, si dos objetos interactúan y luego se separan, no es posible afectar los estados de uno de ellos mediante una acción local sobre el otro. En función de esta razonable suposición, se puede formular el siguiente ''principio de separabilidad'':
“Los contenidos de dos regiones espacio-temporales cualesquiera separadas por un intervalo espacio-temporal que no se anula constituyen sistemas físicos separables, en el sentido que (1) cada uno posee su propio y distinto estado físico, y (2) el estado compuesto de los dos sistemas está totalmente determinado por los estados de los sistemas separados” (Howard 1989, 225-6).
El punto neurálgico de la ''no-separabilidad cuántica'' radica en que, cuando dos sistemas cuánticos interactúan, sus estados quedan entrelazados de tal manera que violan este principio de separabilidad: no sólo sus estados ya no pueden considerarse independientes y propios de cada sistema, sino que el estado compuesto por ambos sistemas no queda determinado por la mera combinación de los estados de los subsistemas. Este último fenómeno viola otro principio usual de la metafísica tradicional: ''el principio de reducción y de composicionalidad'', según el cual “un todo, tal como un par de partículas, no es más que la suma de sus partes –es decir, el todo se reduce a sus partes” (Lange 2002, 289). Esta no-separabilidad en mecánica cuántica posee una clara expresión en el formalismo de la teoría.