Abrir menú principal

DIA β

Decoherencia cuántica

Revisión de 19:16 8 ago 2016 por Admin (Discusión | contribuciones)

La decoherencia cuántica es el proceso que produce la pérdida de coherencia de un estado cuántico. Se puede entender como la destrucción de la interferencia cuántica; la interferencia es el resultado de una de las características más peculiares de la mecánica cuántica, el principio de superposición. Por este motivo la decoherencia juega un papel central en la explicación de cómo las propiedades clásicas de un sistema surgen a partir de su naturaleza cuántica. Las aplicaciones del proceso incluyen diversos problemas de interés físico, biológico, químico, informático y filosófico. Según la versión más aceptada de la decoherencia, ésta se produce a causa de la interacción del sistema cuántico bajo estudio con su ambiente.


Contenido

1 Antecedentes  

El nacimiento de la mecánica cuántica a principios del siglo XX planteó a los investigadores una serie de interrogantes y problemas a resolver, muchos de los cuales actualmente son aún objeto de estudio y motivo de intensos debates. Los intentos de abordar estas cuestiones han dado lugar a una multiplicidad de interpretaciones de la cuántica e innumerables desarrollos teóricos que, de una manera u otra, enriquecen el conocimiento científico acerca de la teoría. Uno de los problemas más atendido por los investigadores consiste en la dificultad teórica de explicar cómo los aparatos de medición con indicadores clásicos (aguja, pantalla, etc.) son capaces de arrojar resultados cuando miden sistemas cuánticos. Este problema es conocido como el problema de la medición (von Neumann 1932, Ballentine 1990, Bub 1997). Otra cuestión que ha sido objeto de múltiples investigaciones es el problema del límite clásico (Bohm 1989, Schlosshauer 2007). Según el principio de correspondencia (Bohr 1920) debería existir un mecanismo que explicara, por medio de algún límite, la aparición de las leyes de la mecánica clásica a partir de las leyes de la mecánica cuántica. El problema del límite clásico consiste en encontrar un mecanismo que pueda explicar la física clásica partiendo de la mecánica cuántica.

Los problemas brevemente mencionados en el párrafo anterior tienen algo en común: la necesidad de hallar un vínculo entre el mundo cuántico y el clásico. La forma en que se ha intentado establecer este vínculo en la historia de la cuántica incluye desarrollos de muy diferente tipo, como, por ejemplo, el Teorema de Ehrenfest (Ehrenfest 1927, Sakurai 1994), la Transformada de Wigner (Wigner 1932, Fortin, Narvaja y Lastiri 2009), la Teoría de las Deformaciones (Dito y Sternheimer 2002, Kontsevich 2003, Sternheimer 1998), etc. Tradicionalmente, el problema fue abordado bajo una concepción respaldada por un enfoque reduccionista, según la cual la mecánica clásica debía obtenerse como un caso límite de la mecánica cuántica de un modo análogo a la obtención de las ecuaciones clásicas de movimiento a partir de las ecuaciones de la relatividad especial. De este modo, el problema se presentaba como un caso de relación interteórica: el problema consistía en obtener la mecánica clásica a partir de la cuántica por aplicación de un límite matemático. Sin embargo, este supuesto se ha debilitado durante las últimas décadas, ya que el problema ha dejado de pensarse exclusivamente en términos de relaciones interteóricas: actualmente se admite que el límite clásico también involucra algún tipo de proceso físico. Una solución al problema consistiría en hallar un proceso específico que transformara los estados cuánticos del sistema de tal modo que, una vez concluido, resultara razonable interpretarlos como estados. Este proceso se conoce como decoherencia cuántica.

Una de las características principales de la mecánica cuántica es el principio de superposición, que da lugar a la aparición del fenómeno de interferencia, que no tiene análogo en mecánica clásica. Así, el proceso de decoherencia cumple una doble función: por un lado cancela los términos de interferencia, y por otro conduce a la regla que selecciona los candidatos a estados clásicos. Históricamente, la decoherencia concibe la cancelación de la interferencia a través de un proceso que convierte un estado puro en una mezcla estable sin términos de interferencia. Es decir, desde el punto de vista geométrico el estado de un sistema cuántico pasa de la frontera de un conjunto convexo de estados (estados puros) a su interior (estados mezcla) (Bengtsson y Yczkowski 2006, Holik, Massri y Ciancaglini 2012, Holik y Plastino 2011). Sobre esta base, la decoherencia fue estudiada en sistemas abiertos y cerrados. Esquemáticamente, pueden identificarse tres períodos en el desarrollo de este programa general (Castagnino et al. 2008):

  • Primer período. En este primer período, autores como van Kampen 1954, van Hove 1957, 1959 y Daneri, Loinger y Prosperi 1962 estudiaron la llegada al equilibrio de los sistemas irreversibles a través de los llamados “observables colectivos”, que son los observables accesibles desde el punto de vista macroscópico. De este modo, el estudio se centraba en tratar de comprender el modo en que las características clásicas macroscópicas emergen del comportamiento cuántico microscópico. Para ello se define un estado de grano grueso  , que lleva toda la información macroscópica del sistema. Los estudios revelaron que, bajo ciertas condiciones,   alcanza el equilibrio en el tiempo de relajación   y el sistema decohere en la autobase de   luego de un tiempo de decoherencia  . Este enfoque está basado en los métodos tradicionales utilizados para estudiar procesos irreversibles. El principal problema de este período fue la comprobación de que el tiempo de decoherencia calculado con estos primitivos formalismos resultó ser demasiado largo comparado con las mediciones experimentales (Omnès 2005).
  • Segundo período. Durante esta segunda etapa se consideraron sistemas abiertos. A un sistema cuántico abierto S se lo considera en interacción con su ambiente E, y se estudia la evolución temporal del estado reducido  . De acuerdo con el enfoque llamado decoherencia inducida por el ambiente (en inglés “environment-induced decoherence”, en adelante EID), desarrollado en múltiples trabajos (ver Zeh 1970, 1971, 1973, Zurek 1982, 1993, 2003), la decoherencia se produce en el sistema como resultado de su interacción con el ambiente. En el marco de este enfoque se prueba que, bajo ciertas condiciones, los estados de E (por “environment” en inglés) se vuelven ortogonales entre sí en un tiempo muy corto y, como consecuencia, la interferencia desaparece rápidamente del estado   del sistema. De este modo,   decohere en una base privilegiada adecuada luego de un tiempo de decoherencia   muy corto; esto resuelve el principal problema del primer período. Inicialmente, este enfoque fue concebido para estudiar el problema de la medición, bajo el supuesto de que, en realidad, los sistemas cuánticos nunca se encuentran aislados, sino que interactúan de un modo significativo con el ambiente (Zeh 1970). De este modo, un sistema abierto S interactúa con el aparato de medición M, y la evolución cuántica correlaciona los estados de ambos sistemas. Según el enfoque EID, el ambiente juega el papel de dispositivo de medición, y se dice que E mide continuamente a S. En la actualidad, el formalismo EID cuenta con diversas aplicaciones experimentales exitosas (ver Joos et al. 2003). No obstante, este enfoque ha sido cuestionado en su capacidad para ofrecer una descripción adecuada del límite clásico debido a que se enfrenta a ciertas dificultades conceptuales, entre las que cabe destacar que no puede ser aplicado a sistemas cerrados.
  • Tercer período. Aunque el enfoque EID continúa siendo el formalismo más utilizado para describir la transición entre el mundo cuántico y clásico, durante los últimos tiempos se han propuesto otros esquemas para enfrentar los problemas de EID, en particular el problema de los sistemas cerrados (Diosi 1987, 1989, Milburn 1991, Penrose 1995, Casati y Chirikov 1995a, 1995b, Adler 2003). Algunas de estas propuestas fueron diseñadas específicamente para describir procesos de decoherencia que no disipan energía desde el sistema hacia el ambiente (ver Bonifacio et al. 2000, Ford y O'Connell 2001, Frasca 2003, Sicardi Shifino et al. 2003, Gambini y Pulin 2007, 2010, Gambini, Porto y Pulin 2007, Kiefer y Polarski 2009, Polarski y Starobinsky 1996). También, en vistas de describir la decoherencia en sistemas cerrados, se ha desarrollado el enfoque de la decoherencia autoinducida (en inglés, self-induced decoherence; en adelante SID), de acuerdo con el cual un sistema cuántico cerrado con espectro continuo puede decoherir por interferencia destructiva y alcanzar un estado final donde puede obtenerse el límite clásico (ver Castagnino y Laura 1997, 2000a, 2000b, Laura y Castagnino 1998a, 1998b, Castagnino 1999, 2004, 2006, Castagnino y Lombardi 2003, 2004, 2005, Castagnino y Ordoñez 2004, Castagnino y Gadella 2006, Castagnino y Fortin 2012b).

El enfoque de la decoherencia inducida por el ambiente es considerado el enfoque ortodoxo dado que la mayor parte de los trabajos en física y filosofía lo utilizan para abordar distintos problemas, tanto prácticos como conceptuales (Bub 1997). Los desarrollos mencionados en el tercer período son motivo de investigaciones y discusiones actuales. Por este motivo, este artículo se centra en la descripción de la decoherencia abordada desde el enfoque EID.


2 El proceso de decoherencia  

Para brindar una correcta descripción del proceso de decoherencia y del significado de los resultados que ofrece, conviene repasar algunas características de los estados cuánticos. El formalismo de la mecánica cuántica fue desarrollado a lo largo de los años para dar cuenta de los distintos experimentos que constituyen su fundamento empírico. Desde las primeras versiones de la “Antigua Teoría Cuántica” (“Old Quantum Mechanics”), formulada en la década de 1910 por Bohr, Wilson, Ishiwara, Planck, Sommerfeld y otros, el formalismo sufrió muchas modificaciones y perfeccionamientos. En el presente trabajo se utilizará un tratamiento actualizado, formulado en un espacio vectorial, ya que resulta ser el más adecuado para tratar los problemas que aquí se estudiarán.


2.1 Los estados en mecánica cuántica  

Según el formalismo de la mecánica cuántica, todo sistema está representado en un espacio de Hilbert  ℋ: el vector de estado,  , es el portador de toda la información accesible acerca del sistema. Este vector de estado evoluciona en el tiempo según la ecuación de Schrödinger, que constituye el postulado dinámico de la teoría, de manera que un estado inicial   se convierte en   al cabo del tiempo  .

Si bien la representación en términos de vectores de estado es apropiada en muchos casos, no es la más general. Con el vector de estado   es posible construir el operador de estado

(2.1)

La representación matemática del operador de estado se realiza en el espacio de Liouville ℒ, que es un espacio “más grande” que el espacio de Hilbert; por lo tanto, permite la representación de estados que no existen en el espacio de Hilbert, es decir, estados que no se pueden escribir como en la expresión (2.1). Por ello, brinda una representación más general que la tradicional en un espacio de Hilbert. En el caso discreto se puede pensar al operador de estado como una matriz, cuyos elementos evolucionan en el tiempo:

(2.2)

Comparando las expresiones (2.1) y (2.2) podemos advertir que un estado de dimensión dos está representado por un vector con dos componentes. En cambio el operador de estado correspondiente es una matriz de 2 x 2 con cuatro elementos. Los grados de libertad en la representación de operadores de estado son más. La evolución del operador de estado   viene dada por la ecuación de von Neumann-Liouville:

(2.3)

donde   es el Hamiltoniano del sistema. Por otro lado, cada propiedad física O del sistema queda representada por un observable específico   que pertenece al espacio de observables 𝒪, de modo que el operador   representa la posición, el operador   representa el momento, etc.


2.1.1 Estados puros y estados mezcla  

Considérese un sistema S, con una propiedad A asociada al observable   con autoestados   y autovalores  . Un estado puro es un estado que admite la representación en términos de vectores de estados:

 

(2.4)

Si bien en este caso   es una superposición de estados   y, por lo tanto, no hay certeza a la hora de predecir el resultado de una medición del observable   éste es un estado puro porque siempre existe un observable   tal que   sea uno de sus autoestados: tendremos absoluta certeza acerca del resultado de una medición del observable  . En términos del operador de estado, tenemos que   es una matriz con todos sus autovalores iguales a 0 excepto uno, que es igual a 1; por ejemplo para, el caso 2×2:

 

(2.5)

El número uno en la diagonal del operador de estado significa que existe un observable tal que si realizamos una medición entonces hay certeza acerca del resultado del experimento. Por ejemplo, si el sistema tiene el operador de estado   entonces su vector de estado es  , por otro lado   es autoestado de algún observable, digamos O. Entonces al medir O obtendremos como resultado   con probabilidad 1. A este tipo de estados se los llama estado puros porque siempre existe una base en la que el estado no es una superposición.

Si el estado no es puro, resulta imposible representarlo en términos de vectores de estado y sólo puede usarse el operador de estado. En este caso no hay certeza en la predicción del resultado de ninguna medición que pueda hacerse sobre el sistema, y al estado se lo llama mezcla. Si se diagonaliza un estado mezcla, se encuentra que todos sus autovalores son menores que 1; por ejemplo, para el caso 2×2

 

(2.6)

La diferencia entre este operador de estado y el de la ecuación (2.5) es que en este caso no hay ningún 1 en la diagonal, por lo tanto no existe ningún observable tal que si realizamos una medición entonces hay certeza acerca del resultado del experimento. En otras palabras no se puede representar como un vector de estado, entonces  .

3 Estados diagonales y no diagonales  

Si bien la distinción entre estados puros y estados mezcla resultará de suma importancia a la hora describir el proceso de decoherencia, es necesario otro ingrediente: la diagonalización del estado.

Dado un estado puro como el de la expresión (2.4), escrito en la base de autoestados del operador  , se obtiene un operador de estado de la forma (2.2), donde los elementos de la diagonal representan las probabilidades   de obtener el resultado